精英家教网 > 高中数学 > 题目详情
矩形ABCD的四个顶点的坐标分别为A(-2,1),B(2,1),C(2,-1),D(-2,-1),过原点且互相垂直的两条直线分别与矩形的边相交于E、F、G、H四点,则四边形EGFH的面积的最小值为______,最大值为______.
设过原点且互相垂直的两条直线分别为 y=kx,和 y=-
1
k
x,(不妨设k>0)由题意得,
则 E (
1
k
,1),F (-
1
k
,-1),G(-k,1),H(k,-1),
由两点间的距离公式得 EF=
(
2
k
)
2
+22
=2
1+
1
k2
,GH=
(2K)2+4
=2
1+k2

四边形EGFH的面积为 S=
1
2
•EF•GH=2
2+k2+
1
k2
=2
(k+
1
k
)
2
=2|k+
1
k
|=2(k+
1
k
).
根据E、G 两点都在线段AB上,可得-2≤
1
k
≤2,且-2≤-k≤2,∴
1
2
≤k≤2.
又函数 S=2(k+
1
k
) 在[
1
2
,1]上是减函数,在[1,2]上是增函数,故 k=1时,S有最小值为4.
当 k=
1
2
时,S=5; 当 k=2时,S=5. 当 k=0时,S=4.
综上,S的最小值等于4,最大值等于 5,
故答案为 4,5.

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设P的轨迹是曲线C,满足:点P到F(-2,0)的距离与它到直线l:x=-4的距离之比是常数,又点M(2,-
2
)
在曲线C上,点N(-1,1)在曲线C的内部.
(1)求曲线C的方程;
(2)|PN|+
2
|PF|
的最小值,并求此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与y轴相切且和半圆x2+y2=4(0≤x≤2)内切的动圆圆心的轨迹方程是(  )
A.y2=4(x+1)(0<x≤1)B.y2=4(x-1)(0<x≤1)
C.y2=-4(x-1)(0<x≤1)D.y2=-2(x-1)(0<x≤1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知l1和l2是平面内互相垂直的两条直线,它们的交点为A,异于点A的两动点B、C分别在l1、l2上,且BC=3,则过A、B、C三点的动圆所形成的图形面积为(  )
A.6πB.9πC.
2
D.
9
4
π

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB为半圆的直径,P为半圆上一点,|AB|=10,∠PAB=a,且sina=
4
5
,建立适当的坐标系.
(1)求A、B为焦点且过P点的椭圆的标准方程.
(2)动圆M过点A,且与以B为圆心,以2
5
为半径的圆相外切,求动圆圆心M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设A为圆(x-1)2+y2=1上的动点,PA是圆的切线且|PA|=1,则P点的轨迹方程(  )
A.(x-1)2+y2=4B.(x-1)2+y2=2C.y2=2xD.y2=-2x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知P是曲线y=2x2-1上的动点,定点A(0,-1),且点P不同于点A,若M点满足
PM
=2
MA
,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1,F2分别是椭圆+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且PF1⊥PF2,则点P的横坐标为(  )
A.1B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.

查看答案和解析>>

同步练习册答案