精英家教网 > 高中数学 > 题目详情
1.在△ABC中,a,b,c分别是角A,B,C的对边,若tanA=3,cosC=$\frac{\sqrt{5}}{5}$,c=4.
(1)求角B;
(2)求△ABC的面积.

分析 (1)根据cosC可求得sinC和tanC,根据tanB=-tan(A+C),可求得tanB,进而求得B.
(2)先由正弦定理可求得b,根据sinA=sin(B+C)求得sinA,进而根据三角形的面积公式求得面积.

解答 (本题满分为10分)
解:(1)∵cosC=$\frac{\sqrt{5}}{5}$,
∴sinC=$\frac{2\sqrt{5}}{5}$,可得:tanC=2,…2分
∵tanB=-tan(A+C)=-$\frac{tanA+tanC}{1-tanAtanC}$=1,
又0<B<π,
∴B=$\frac{π}{4}$…4分
(2)由正弦定理$\frac{b}{sinB}=\frac{c}{sinC}$,可得b=$\frac{csinB}{sinC}$=$\sqrt{10}$,
由sinA=sin(B+C)=sin($\frac{π}{4}$+C)得,sinA=$\frac{3\sqrt{10}}{10}$
∴△ABC面积为:S=$\frac{1}{2}$bcsinA=6…10分

点评 本题主要考查了正弦定理和三角形面积公式的实际应用.正弦定理和余弦定理及三角形的面积公式都是解三角形的常用公式,需要重点记忆,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列函数在其定义域中,既是奇函数又是增函数的(  )
A.y=x+1B.y=-x2C.y=x|x|D.$y=\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知不等式$\frac{k{x}^{2}+kx+6}{{x}^{2}+x+2}$>2对任意x∈R恒成立,则k的取值范围为[2,10).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若g(x+1)=2x-2,则g(0)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线$l\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t-1\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ-2cosθ,若直线l与曲线C相交与A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,在直二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则直线AB与CD所成角的余弦值为(  )
A.$\frac{{2\sqrt{29}}}{29}$B.$\frac{{\sqrt{29}}}{29}$C.$\frac{{5\sqrt{29}}}{29}$D.$\frac{{2\sqrt{203}}}{29}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C的中心在原点,焦点在x轴上,长轴长为8,离心率是方程2x2-5x+2=0的一个解.
(1)求椭圆C的标准方程;
(2)设椭圆的左右焦点分别为F1,F2,点E(0,1),问是否存在不平行F1F2的直线l与椭圆C交于M、N两点且|ME|=|NE|,若存在,求出直线l斜率的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题中正确的是(  )
A.x=1是x2-2x+1=0的充分不必要条件
B.在△ABC中,A>B是cosA<cosB的必要不充分条件
C.?n∈N+,2n2+5n+2能被2整除是假命题
D.若p∧(¬q)为假,p∨(¬q)为真,则p,q同真或同假

查看答案和解析>>

同步练习册答案