精英家教网 > 高中数学 > 题目详情
二次函数f(x)满足:f(1-x)=f(x)且f(0)=1,f(2)=3
(1)求f(x)的解析式;
(2)若g(x)=2x+1,求f[g(2)].
(1)设f(x)=ax2+bx+c,a≠0,
∵f(1-x)=f(x),f(0)=1,f(2)=3,
a(1-x)2+b(1-x)+c=ax2+bx+c
c=1
4a+2b+c=3

(2a+2b)x-(a+b)=0
c=1
4a+2b=2

由(2a+2b)x-(a+b)=0恒成立,
2a+2b=0
a+b=0
,即a=-b,又4a+2b=2
解得a=1,b=-1,c=1,
∴f(x)=x2-x+1.
(2)∵g(x)=2x+1,
∴g(2)=2×2+1=5,
∴f[g(2)]=f(5)=25-5+1=21.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,则函数y=f(x)-3的零点是
-1,2
-1,2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足:①在x=1时有极值;②二次函数图象过点(0,-3),且在该点处的切线与直线2x+y=0平行.
(1)求f(x)的解析式;
(2)求函数g(x)=f(x2)的单调递增区间与极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(
x
+1)=x+2
,求函数f(x)的解析式;
(2)若二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数f(x)满足:f(0)=2,f(x)=f(-2-x),它的导函数的图象与直线y=2x平行.
(I)求f(x)的解析式;
(II)若函数g(x)=xf(x)-x的图象与直线y=m有三个公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知一次函数f(x)满足条件:f(3)=7,f(5)=-1,求f(0),f(1)的值;
(2)已知二次函数f(x)满足条件:f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.

查看答案和解析>>

同步练习册答案