精英家教网 > 高中数学 > 题目详情

【题目】已知F1、F2是椭圆 + =1的左、右焦点,O为坐标原点,点P(﹣1, )在椭圆上,线段PF2与y轴的交点M满足 + =
(1)求椭圆的标准方程;
(2)⊙O是以F1F2为直径的圆,一直线l:y=kx+m与⊙O相切,并与椭圆交于不同的两点A、B.当 =λ且满足 ≤λ≤ 时,求△AOB面积S的取值范围.

【答案】
(1)解:∵ + = ,∴点M是线段PF2的中点,

∴OM是△PF1F2的中位线,

又OM⊥F1F2∴PF1⊥F1F2

,解得a2=2,b2=1,c2=1,

∴椭圆的标准方程为 =1.


(2)解:∵圆O与直线l相切,∴ ,即m2=k2+1,

,消去y:(1+2k2)x2+4kmx+2m2﹣2=0,

∵直线l与椭圆交于两个不同点,

∴△>0,∴k2>0,设A(x1,y1),B(x2,y2),

则x1+x2=﹣

y1y2=(kx1+m)(kx2+m)

=

=

=x1x2+y1y2= =λ,

,∴ ,解得:

S=SAOB=

=

=

设μ=k4+k2,则

S=

∵S关于μ在[ ]上单调递增,

S( )= ,S(2)=


【解析】(Ⅰ)由已知条件推导出 ,由此能求出椭圆的标准方程.(Ⅱ)由圆O与直线l相切,和m2=k2+1,由 ,得(1+2k2)x2+4kmx+2m2﹣2=0,由此能求出△AOB面积S的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列判断错误的是(
A.命题“若xy=0,则x=0”的否命题为“若xy≠0,则x≠0”
B.命题“?x∈R,x2﹣x﹣1≤0”的否定是“
C.若p,q均为假命题,则p∧q为假命题
D.命题“?x∈[1,2],x2﹣a≤0”为真命题的一个充分不必要条件是a≥4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= cos4x+2sinxcosx﹣ sin4x.
(1)当x∈[0, ]时,求f(x)的最大值、最小值以及取得最值时的x值;
(2)设g(x)=3﹣2m+mcos(2x﹣ )(m>0),若对于任意x1∈[0, ],都存在x2∈[0, ],使得f(x1)=g(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:函数f(x)=lg(ax2﹣x+ )的值域为R;命题q:3x﹣9x<a对一切实数x恒成立,如果命题“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣
(1)求f(x)的定义域与最小正周期;
(2)讨论f(x)在区间[﹣ ]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圆C与直线l:x+2y﹣4=0相交于M,N两点,且|MN|= ,求m的值;
(2)在(1)条件下,是否存在直线l:x﹣2y+c=0,使得圆上有四点到直线l的距离为 ,若存在,求出c的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数x,y满足x2+y2﹣2x+2 y+3=0,则x﹣ y的取值范围是(
A.[2,+∞)
B.(2,6)
C.[2,6]
D.[﹣4,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是检测某种浓度的农药随时间x(秒)渗入某种水果表皮深度y(微米)的一组结果.

时间x(秒)

5

10

15

20

30

深度y(微米)

6

10

10

13

16


(1)在规定的坐标系中,画出 x,y 的散点图;
(2)求y与x之间的回归方程,并预测40秒时的深度(回归方程精确到小数点后两位;预测结果精确到整数). 回归方程: =bx+a,其中 = ,a= ﹣b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(A>0,ω,0,|φ|< )的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数F(x)=3[f(x﹣ )]2+mf(x﹣ )+2在区间[0, ]上有四个不同零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案