精英家教网 > 高中数学 > 题目详情
13.为了得到班级人数,老师先让同学们从1到3循环报数,结果最后一个同学报2;再让同学们从1到5循环报数,最后一个同学报3,;又让同学们从1到7循环报数,最后一个同学报4,请你画出计算这个班至少有多少人的算法图框.

分析 设这个班有x个同学,则x满足三个条件:①x除以3余2;②x除以5余3;③x除以7余4.只要从x=7开始依次增加1,直至三个条件全满足时即得到的数为最少人数,即可画出程序框图.

解答 解:程序框图如下:

点评 本题主要考查了设计程序框图解决实际问题,正确分析题意得到算法是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足a1=2,an+1=3an+2(n∈N*
(1)求证:数列{an+1}是等比数列;
(2)设bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)是定义在R上的不恒为零的函数,且对于任意的a、b∈R,都满足f(a•b)=af(b)+bf(a),若f($\frac{1}{2}$)=1,an=$\frac{f({2}^{-n})}{n}$.
(1)求f($\frac{1}{4}$)、f($\frac{1}{8}$)、f($\frac{1}{16}$)的值;
(2)猜测数列{an}通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设公差不为0的等差数列{an}首项a1=9,且a4是a1与a8的等比中项,则公差d=(  )
A.$\frac{1}{9}$B.1C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知c>0,且c≠1.设命题p:函数f(x)=logcx为减函数,命题q:当x∈[$\frac{1}{2}$,2]时,函数g(x)=x+$\frac{1}{x}$>$\frac{1}{c}$恒成立.如果p或q为真命题,p且q为假命题,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a=40.4,b=0.44,c=log40.4,则a,b,c的大小关系为a>b>c.(从大到小)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.可以将椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{8}$=1变为圆x2+y2=4的伸缩变换为(  )
A.$\left\{\begin{array}{l}{x′=\frac{2}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$B.$\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{2}x}\\{y′=\sqrt{2}y}\end{array}\right.$C.$\left\{\begin{array}{l}{x′=\frac{\sqrt{2}}{2}x}\\{y′=\frac{\sqrt{10}}{5}y}\end{array}\right.$D.$\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α=cos234°-cos256°,b=2sin78°sin12°,c=$\frac{2tan12°}{1-ta{n}^{2}12°}$,则有(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a1=2,an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,n=1,2,3,…
(1)计算a2,a3,a4的值,根据计算结果,猜想{an}的通项公式;
(2)用数字归纳法证明你的猜想.

查看答案和解析>>

同步练习册答案