精英家教网 > 高中数学 > 题目详情
3.已知圆的方程是x2+y2=1,则经过圆上一点M(1,0)的切线方程是(  )
A.x=1B.y=1C.x+y=1D.x-y=1

分析 由圆的方程找出圆心坐标和圆的半径,然后求出经过圆上一点M(1,0)的切线方程.

解答 解:由圆x2+y2=1,得到圆心A的坐标为(0,0),圆的半径r=1,
∴经过圆上一点M(1,0)的切线方程是x=1,
故选:A.

点评 此题考查学生掌握点与圆的位置关系及直线与圆的位置关系,掌握两直线垂直时斜率所满足的关系,会根据一点的坐标和直线的斜率写出直线的方程,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)设g(x)=2x+m,若对任意的x∈[-1,1],f(x)>g(x)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.谷志伟,简书两位老师下棋,简老师获胜的概率是40%,谷老师不胜的概率为60%,则两位老师下成和棋的概率为(  )
A.10%B.30%C.20%D.50%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线y2=2px(p>0)上的点到焦点的距离的最小值为2,过点(0,1)的直线l与抛物线只有一个公共点,则焦点到直线l的距离为(  )
A.1或$\sqrt{2}$或2B.1或2或$\sqrt{5}$C.2或$\sqrt{2}$D.2或$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若复数z满足(3-4i+z)i=2+i,则复数z所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线$\left\{\begin{array}{l}{x=-2-\sqrt{2}t}\\{y=3+\sqrt{2}t}\end{array}\right.$(t为参数)对应的普通方程是x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f(x)=$\left\{\begin{array}{l}{lo{g}_{4}x-1,x>0}\\{{2}^{x}-x+\frac{1}{3}{a}^{3},x≤0}\end{array}\right.$,若f(f(4))=$\frac{11}{3}$,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{{m•{4^x}+1}}{2^x}$是偶函数.
(1)求实数m的值;
(2)若关于x的不等式2k•f(x)>3k2+1在(-∞,0)上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某单位280名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.
( I)现要从年龄低于40岁的员工中用分层抽样的方法抽取12人,则年龄在第1,2,3组的员工人数分别是多少?
( II)为了交流读书心得,现从上述12人中再随机抽取3人发言,设3人中年龄在[35,40)的人数为ξ,求ξ的数学期望;
( III)为了估计该单位员工的阅读倾向,现对从该单位所有员工中按性别比例抽取的40人做“是否喜欢阅读国学类书籍”进行调查,调查结果如下表所示:(单位:人)
喜欢阅读国学类 不喜欢阅读国学类 合计
 男 14 4 18
 女 8 14 22
 合计 22 18 40
根据表中数据,我们能否有99%的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案