精英家教网 > 高中数学 > 题目详情
17.已知集合M={x|x2=2},N={x|ax=1},若N⊆M,则a的值是{0,-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$}.

分析 先化简集合M,再由N⊆M,得出集合N的可能情况,通过分类讨论求出a即可.

解答 解:∵x2=2,∴x=±$\sqrt{2}$,
∴M={x|-$\sqrt{2}$,$\sqrt{2}$}.
由于N={x|ax=1},且N⊆M,
∴集合N可能为:∅,{-$\sqrt{2}$},{$\sqrt{2}$}.
①当a=0时,B=∅,适合条件.
②若B={-$\sqrt{2}$},则必有-$\sqrt{2}$a=1,解得a=-$\frac{\sqrt{2}}{2}$,
∴当a=-$\frac{\sqrt{2}}{2}$时,B={-$\sqrt{2}$},适合条件.
③若B={$\sqrt{2}$},则必有$\sqrt{2}$a=1,解得a=$\frac{\sqrt{2}}{2}$.
∴当a=$\frac{\sqrt{2}}{2}$时,B={$\sqrt{2}$},适合条件.
综上可知:实数a的取值集合为{0,-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$}.
故答案为:{0,-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$}.

点评 本题考查了集合间的关系,分类讨论是解决此问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知f(x)=$\frac{m}{x+1}$+nlnx(m,n为常数),在x=1处的切线方程为x+y-2=0.
(Ⅰ)求f(x)的解析式并写出定义域;
(Ⅱ)若?x∈[$\frac{1}{e}$,1],使得对?t∈[$\frac{1}{2}$,2]上恒有f(x)≥t3-t2-2at+2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sin(α-β)sinβ-cos(α-β)cosβ=$\frac{4}{5}$,且α是第二象限的角,求tan($\frac{π}{4}$+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列2,3,5,9,17,33,…的通项公式an可以是(  )
A.2nB.2n+1C.2n-1D.2n-1+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.点P(x0,y0)是曲线C:x=e-|x|(x≠0)上的一个动点,曲线C在点P处的切线与x轴、y轴分别交于A,B两点,点O是坐标原点,则△AOB面积的最大值为(  )
A.$\frac{2}{e}$B.$\frac{4}{e}$C.$\sqrt{e}$D.2$\sqrt{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设m,n为正实数,且m+n=1,则$\frac{1}{m}+\frac{1}{n}$的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是(  )
A.众数B.平均数C.中位数D.方差

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设$\overrightarrow a,\overrightarrow b$都是单位向量,且$\overrightarrow a$与$\overrightarrow b$的夹角为60°,则$|\overrightarrow a+\overrightarrow b|$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知O(0,0),M(-1,-2),N(3,n)均在直线l上,
(1)求n的值及直线l的斜率;
(2)若点P为直线l上一个动点,A(1,5),B(7,1),求$\overrightarrow{PA}•\overrightarrow{PB}$的最小值.

查看答案和解析>>

同步练习册答案