精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
6
3
,一条准线方程为x=
3
6
2

(1)求椭圆C的方程;
(2)设G,H为椭圆上的两个动点,O为坐标原点,且OG⊥OH.
①当直线OG的倾斜角为60°时,求△GOH的面积;
②是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.
(1)因为椭圆的离心率e=
6
3
,一条准线方程为x=
3
6
2

所以
c
a
=
6
3
a2
c
=
3
6
2
,a2=b2+c2,…(2分)
解得a=3,b=
3

所以椭圆方程为
x2
9
+
y2
3
=1
. …(4分)
(2)①由
y=
3
x
x2
9
+
y2
3
=1
,解得
x2=
9
10
y2=
27
10
,…(6分)
y=-
3
3
x
x2
9
+
y2
3
=1
x2=
9
2
y2=
3
2
,…(8分)
所以OG=
3
10
5
,OH=
6
,所以
S △GOH
=
3
15
5
.…(10分)
②假设存在满足条件的定圆,设圆的半径为R,则OG•OH=R•GH
因为OG2+OH2=GH2,故
1
OG2
+
1
OH2
=
1
R2

当OG与OH的斜率均存在时,不妨设直线OG方程为:y=kx,与椭圆方程联立,可得xG2=
9
1+3k2
yG2=
9k2
1+3k2

OG2=
9+9k2
1+3k2

同理可得OH2=
9+9k2
3+k2

1
OG2
+
1
OH2
=
4
9
=
1
R2
,∴R=
3
2

当OG与OH的斜率有一个不存在时,可得
1
OG2
+
1
OH2
=
4
9
=
1
R2

故满足条件的定圆方程为x2+y2=
9
4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案