精英家教网 > 高中数学 > 题目详情

如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.

(1)求抛物线E的方程;

(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明:以PQ为直径的圆恒过y轴上某定点.

 

(1)x2=4y.(2)见解析

【解析】(1)依题意,OB=8,∠BOy=30°.设B(x,y),则x=OBsin30°=4,y=OBcos30°=12.因为点B(4,12)在x2=2py上,所以(4)2=2p×12,解得p=2.故抛物线E的方程为x2=4y.

(2)由(1)知y=x2,y′=x.设P(x0,y0),

则x0≠0,y0=,且l的方程为y-y0=x0(x-x0),即y=x0x-.

所以Q为.

设M(0,y1),令·=0对满足y0=(x0≠0)的x0,y0恒成立.

由于=(x0,y0-y1),

·=0,得-y0-y0y1+y1+=0,即(+y1-2)+(1-y1)y0=0.(*)

由于(*)式对满足y0=(x0≠0)的y0恒成立,所以解得y1=1.

故以PQ为直径的圆恒过y轴上的定点M(0,1).

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第十一章第6课时练习卷(解析版) 题型:填空题

一高考考生咨询中心有A、B、C三条咨询热线.已知某一时刻热线A、B占线的概率均为0.5,热线C占线的概率为0.4,各热线是否占线相互之间没有影响,假设该时刻有ξ条热线占线,则随机变量ξ的期望为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第十一章第4课时练习卷(解析版) 题型:填空题

下列问题属于超几何分布的有________.(填序号)

①抛掷三枚骰子,所得向上的数是6的骰子的个数记为X,求X的概率分布列;

②有一批种子的发芽率为70%,现任取10颗种子做发芽实验,把实验中发芽的种子的个数记为X,求X的概率分布列;

③一盒子中有红球3只,黄球4只,蓝球5只,现任取3只球,把不是红色的球的个数记为X,求X的概率分布列;

④某班级有男生25人,女生20人,现选派4名学生参加学校组织的活动,班长必须参加,其中女生人数记为X,求X的概率分布列.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第十一章第3课时练习卷(解析版) 题型:填空题

在(x+y)n的展开式中,若第七项系数最大,则n的值可能为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第9课时练习卷(解析版) 题型:填空题

如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C.若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为________.

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第9课时练习卷(解析版) 题型:解答题

抛物线y2=2px的准线方程为x=-2,该抛物线上的每个点到准线x=-2的距离都与到定点N的距离相等,圆N是以N为圆心,同时与直线l1:y=x和l2:y=-x相切的圆,

(1)求定点N的坐标;

(2)是否存在一条直线l同时满足下列条件:

①l分别与直线l1和l2交于A、B两点,且AB中点为E(4,1);

②l被圆N截得的弦长为2.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第9课时练习卷(解析版) 题型:填空题

抛物线y=ax2的准线方程是y=2,则a的值是________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第8课时练习卷(解析版) 题型:解答题

已知双曲线=1(a>0,b>0)的两条渐近线方程为y=±x,若顶点到渐近线的距离为1,求双曲线方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第6课时练习卷(解析版) 题型:填空题

在平面直角坐标系中,有椭圆=1(a>b>0)的焦距为2c,以O为圆心,a为半径的圆.过点作圆的两切线互相垂直,则离心率e=________.

 

 

查看答案和解析>>

同步练习册答案