精英家教网 > 高中数学 > 题目详情

如图,B、C是线段AD的三等分点.

分别以图中各点为起点和终点最多可以写出________个互不相等的非零向量.

答案:6
解析:


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•莆田模拟)如图,F是抛物线E:y2=2px(p>0)的焦点,A是抛物线E上任意一点.现给出下列四个结论:
①以线段AF为直径的圆必与y轴相切;
②当点A为坐标原点时,|AF|为最短;
③若点B是抛物线E上异于点A的一点,则当直线AB过焦点F时,|AF|+|BF|取得最小值;
④点B、C是抛物线E上异于点A的不同两点,若|AF|、|BF|、|CF|成等差数列,则点A、B、C的横坐标亦成等差数列.
其中正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△OFQ的面积为2
6
,且
OF
FQ
=m

(1)设
6
<m<4
6
,求向量
OF
FQ
的夹角θ
正切值的取值范围;
(2)设以O为中心,F为焦点的双曲线经过点Q(如图),|
OF
|=c,m=(
6
4
-1)c2
,当|
OQ
|
取得最小值时,求此双曲线的方程.
(3)设F1为(2)中所求双曲线的左焦点,若A、B分别为此双曲线渐近线l1、l2上的动点,且2|AB|=5|F1F|,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:044

如图3-1-3,已知A、B、C三点在平面α上沿直线l的平行射影分别为A′、B′、C′,且C是AB的中点.求证:C′是线段A′B′的中点.

图3-1-3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中

(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;

(2)经过点O的直线l与直线AB成60°角,当c=2,a=1时,动点P的轨迹记为E,设过点B的直线m交曲线E于M、N两点,且点M在直线AB的上方,求点M到直线l的距离d的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

如图3-1-3,已知A、B、C三点在平面α上沿直线l的平行射影分别为A′、B′、C′,且C是AB的中点.求证:C′是线段A′B′的中点.

3-1-3

查看答案和解析>>

同步练习册答案