精英家教网 > 高中数学 > 题目详情
(2012•莆田模拟)如图,F是抛物线E:y2=2px(p>0)的焦点,A是抛物线E上任意一点.现给出下列四个结论:
①以线段AF为直径的圆必与y轴相切;
②当点A为坐标原点时,|AF|为最短;
③若点B是抛物线E上异于点A的一点,则当直线AB过焦点F时,|AF|+|BF|取得最小值;
④点B、C是抛物线E上异于点A的不同两点,若|AF|、|BF|、|CF|成等差数列,则点A、B、C的横坐标亦成等差数列.
其中正确结论的个数是(  )
分析:①设A的坐标,求出圆心坐标,可得圆心到y轴的距离,圆的半径,即可判断以线段FA为直径的圆与y轴相切;
②利用抛物线的定义得出|AF|=|x+
p
2
|,从而可得当点A为坐标原点时,|AF|为最短;
③设A(x1,y1),B(x2,y2),则|AF|+|BF|=x1+x2+p,显然x1+x2=0,即A、B关于x轴对称时,|AF|+|BF|取得最小值;
④设点A、B、C的横坐标,利用|AF|、|BF|、|CF|成等差数列,根据抛物线的定义,即可得到结论.
解答:解:①由已知抛物线y2=-2px(p>0)的焦点F(-
p
2
,0),设A(x1,y1),则圆心坐标为(
2x1-p
4
y1
2
),∴圆心到y轴的距离为
p-2x1
4
,圆的半径为
|FA|
2
=
1
2
p
2
-x1),∴以线段FA为直径的圆与y轴相切.故①正确;
②设A(x,y),则|AF|=|x+
p
2
|,∴x=0时,即当点A为坐标原点时,|AF|为最短,②正确;
③设A(x1,y1),B(x2,y2),则|AF|+|BF|=x1+x2+p,显然x1+x2=0,即A、B关于x轴对称时,|AF|+|BF|取得最小值,故③不正确;
④设点A、B、C的横坐标分别为a,b,c,则∵|AF|、|BF|、|CF|成等差数列,∴2|BF|=|AF|+|CF|,∴2(b+p)=(a+p)+(c+p),∴2b=a+c,∴点A、B、C的横坐标亦成等差数列,故④正确.
综上知,正确结论的个数是3个
故选C.
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到直线与圆的位置关系及直线与抛物线的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•莆田模拟)若点(m,n)在直线4x+3y-10=0上,则m2+n2的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•莆田模拟)已知函数f(x)=lnx+x2-mx.
(1)若m=3,求函数f(x)的极小值;
(2)若函数f(x)在定义域内为增函数,求实数m的取值范围;
(3)若m=1,△ABC的三个顶点A(x1,y1),B(x2,y2),C(x3,y3)在函数f(x)的图象上,且x1<x2<x3,a、b、c分别为△ABC的内角A、B、C所对的边.求证:a2+c2<b2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•莆田模拟)若实数a,b,c使得函数f(x)=x3+ax2+bx+c的三个零点分别为椭圆、双曲线、抛物线的离心率e1,e2,e3,则a,b,c的一种可能取值依次为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•莆田模拟)由函数f(x)=ex-e的图象,直线x=2及x轴所围成的图象面积等于(  )

查看答案和解析>>

同步练习册答案