精英家教网 > 高中数学 > 题目详情
13.给定正三棱锥P-ABC,M点为底面正三角形ABC内(含边界)一点,且M到三个侧面PAB、PBC、PAC的距离依次成等差数列,则点M的轨迹为(  )
A.椭圆的一部分B.一条线段C.双曲线的一部分D.抛物线的一部分

分析 先设点M到三个侧面PAB、PBC、PCA的距离为d-a,d,d+a,正三棱锥P-ABC中各个侧面的面积为S,体积为V,用等体积法可得d为常数,作平面α∥面PBC且它们的面面距离为d,则α与面ABC的交线即为点M的轨迹.

解答 解:设点M到三个侧面PAB、PBC、PCA的距离为d-a,d,d+a 
正三棱锥P-ABC中各侧面的面积为S,体积为V,
则$\frac{1}{3}$S(d-a)+$\frac{1}{3}S$d+$\frac{1}{3}S$(d+a )=V,即Sd=V,
所以d为常数.
作平面α使α∥面PBC且它们的距离为d,则α与面ABC的交线即为点M的轨迹.
易知M的轨迹为一条线段.
故选:B.

点评 本小题主要考查等差数列、体积法的应用、轨迹方程等基础知识,考查空间想象能力思想、化归与转化思想.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.若以直角坐标系xOy的O为极点,Ox为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程是ρ=$\frac{6cosθ}{si{n}^{2}θ}$.
(1)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;
(2)若直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{3}{2}+t}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数)当直线l与曲线C相交于A,B两点,求|$\overrightarrow{AB}$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知,在多面体EF-ABCD中,已知ABCD是边长为4的正方形,EF=2,EF∥AB,平面FBC⊥平面ABCD,M,N分别是AB,CD的中点.
(1)求证:平面MNE∥平面BCF;
(2)若在△BCF中,CF=$\sqrt{10}$,BC边上的高FH=3,求二面角E-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点列${A_n}({{a_n},{b_n}})({n∈{N^*}})$是函数y=ax(a>0,a≠1)图象上的点,点列Bn(n,0)满足|AnBn|=|AnBn+1|,若数列{bn}中任意相邻三项能构成三角形三边,则a的取值范围是(  )
A.$0<a<\frac{{\sqrt{5}-1}}{2}$或$a>\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{5}-1}}{2}<a<1$或$1<a<\frac{{\sqrt{5}+1}}{2}$
C.$0<a<\frac{{\sqrt{3}-1}}{2}$或$a>\frac{{\sqrt{3}+1}}{2}$D.$\frac{{\sqrt{3}-1}}{2}<a<1$或$1<a<\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图表示的是求首项为-41,公差为2的等差数列前n项和的最小值的程序框图,如果?②中填a=a+2,则①?可填写a>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.小明、小红等4位同学各自申请甲、乙两所大学的自主招生考试资格,则每所大学恰有两位同学申请,且小明、小红没有申请同一所大学的可能性有4种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题“?a∈[0,+∞),sina>a”的否定形式是(  )
A.?a∈[0,+∞),sina≤aB.?a∈[0,+∞),sina≤aC.?a∈(-∞,0),sina≤aD.?a∈(-∞,0),sina>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=$\frac{x}{{e}^{x-1}}$,g(x)=(2-a)x-2lnx+a-2.
(Ⅰ)当a=2时,求g(x)在(1,g(1))处的切线方程;
(Ⅱ)若方程g(x)=0在(0,$\frac{1}{2}$)上无实数根,求实数a的取值范围;
(Ⅲ)若对于?x0∈(0,e],在区间(0,e]上总存在两个不同实数xi(i=1,2),使得f(x0)=g(xi),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}满足a1=3,an=-an-1-2n+1,在a26,a27,a29,a29,a30中,最大的一项是(  )
A.a26B.a27C.a28D.a29
E.a30         

查看答案和解析>>

同步练习册答案