精英家教网 > 高中数学 > 题目详情
1.设不等式组$\left\{\begin{array}{l}{x+y-3<0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$表示的平面区域为Ω1,平面区域Ω2与Ω1关于直线2x+y=0对称,对于任意的C∈Ω1,D∈Ω2,则|CD|的最小值为$\frac{2\sqrt{5}}{5}$.

分析 由题意作出可行域,数形结合得到的平面区域是Ω1内到直线2x+y=0距离最小的点,由点到直线的距离公式求得答案.

解答 解:由不等式组$\left\{\begin{array}{l}{x+y-3<0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$作出可行域如图,

由图可知,可行域Ω1内的点A(1,-1)到直线2x+y=0的距离最小,
则Ω2中的点B与Ω1内的点A的距离的最小值为A到直线2x+y=0的距离的2倍.
|AB|的最小值等于2×$\frac{|2-1|}{\sqrt{{2}^{2}+{1}^{2}}}$=$\frac{2\sqrt{5}}{5}$.
故答案为:$\frac{{2\sqrt{5}}}{5}$.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.(Ⅰ)抛物线的顶点在原点,坐标轴为对称轴,并经过点P(-3,-6),求此抛物线的方程.
(Ⅱ)已知圆:x2+y2=c2(c>0),把圆上的各点纵坐标不变,横坐标伸长到原来的$\sqrt{2}$倍得一椭圆.求椭圆方程,并证明椭圆离心率是与c无关的常数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.复平面内$\frac{i}{1-i}$对应的点在第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足sinBcosA=-(2sinC+sinA)cosB.
(1)求角B的大小;
(2)求函数f(x)=2cos2x+cos(2x-B)在区间$[0,\frac{π}{2}]$上的最小值及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知公差不为0的等差数列{an}的前n项和为Sn,S7=70且a1,a2,a6成等比数列.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{{2{S_n}}}{n}$,求数列$\left\{\frac{1}{{b}_{n}{b}_{n+1}}\right\}前的n$项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合M={x|x2-2x>0},集合N={0,1,2,3,4},则M∩N等于(  )
A.{4}B.{3,4}C.{0,1,2}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在直二面角A-BD-C中,△ABD、△CBD均是以BD为斜边的等腰直角三角形,取AD中点E,将△ABE沿BE翻折到△A1BE,在△ABE的翻折过程中,下列不可能成立的是(  )
A.BC与平面A1BE内某直线平行B.CD∥平面A1BE
C.BC与平面A1BE内某直线垂直D.BC⊥A1B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=(1-tanx)[1+\sqrt{2}sin(2x+\frac{π}{4})]$求
(1)函数f(x)的定义域和值域;
(2)若$f(\frac{α}{2})=\frac{8}{5},f(\frac{π+2β}{4})=\frac{24}{13}$,其中$α∈(0,\frac{π}{2}),β∈(-\frac{π}{2},0)$,求$f(\frac{α+β}{2})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若实数x,y满足约束条件$\left\{\begin{array}{l}x-2y+3≥0\\ y≥x\\ x≥1\end{array}\right.$,则$z=\frac{y}{x+1}$的最小值为(  )
A.$\sqrt{3}$B.1C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案