精英家教网 > 高中数学 > 题目详情
13.如图,在直二面角A-BD-C中,△ABD、△CBD均是以BD为斜边的等腰直角三角形,取AD中点E,将△ABE沿BE翻折到△A1BE,在△ABE的翻折过程中,下列不可能成立的是(  )
A.BC与平面A1BE内某直线平行B.CD∥平面A1BE
C.BC与平面A1BE内某直线垂直D.BC⊥A1B

分析 构造平面BCE,平面BFE,则可判断A,B,C,使用假设法判断D.

解答 解:连结CE,当平面A1BE与平面BCE重合时,BC?平面A1BE,
∴平面A1BE内必存在与BC平行和垂直的直线,故A,C可能成立;
在平面BCD内过B作CD的平行线BF,使得BF=CD,
连结EF,则当平面A1BE与平面BEF重合时,BF?平面A1BE,
故平面A1BE内存在与BF平行的直线,即平面A1BE内存在与CD平行的直线,
∴CD∥平面A1BE,故C可能成立.
若BC⊥A1B,又A1B⊥A1E,则A1B为直线A1E和BC的公垂线,
∴A1B<CE,
设A1B=1,则经计算可得CE=$\frac{\sqrt{3}}{2}$,
与A1B<CE矛盾,故D不可能成立.
故选D.

点评 本题考查了空间线面位置关系的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,满足$\frac{cosB}{cosC}+\frac{2a}{c}+\frac{b}{c}=0$.
(Ⅰ)求∠C的大小;
(Ⅱ)求sin2A+sin2B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.终边在直线y=$\sqrt{3}$x上的角的集合为{α|α=60°+n•180°,n∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设不等式组$\left\{\begin{array}{l}{x+y-3<0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$表示的平面区域为Ω1,平面区域Ω2与Ω1关于直线2x+y=0对称,对于任意的C∈Ω1,D∈Ω2,则|CD|的最小值为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\overrightarrow a=(sinα,1)$,$\overrightarrow b=(-2,4cosα)$,若$\overrightarrow a$与$\overrightarrow b$共线,则tanα=(  )
A.1B.-1C.±1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow{a}$=(sinα,cosα),$\overrightarrow{b}$=($\sqrt{3}$,1),且$\overrightarrow{a}⊥\overrightarrow{b}$,那么sin(α+$\frac{π}{3}$)=(  )
A.-$\frac{1}{2}$或$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知0<α<$\frac{π}{2}$<β<π,又sinα=$\frac{3}{5}$,cos(α+β)=-$\frac{4}{5}$,则sinβ=(  )
A.0B.$\frac{24}{25}$C.$\frac{16}{25}$D.$\frac{24}{25}$或$\frac{16}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知某物体的运动方程是S=t+$\frac{1}{9}$t3,则当t=3s时的瞬时速度是4m/s.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.${∫}_{0}^{1}$(-$\sqrt{1-{x}^{2}}$)dx=-$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案