精英家教网 > 高中数学 > 题目详情
5.已知0<α<$\frac{π}{2}$<β<π,又sinα=$\frac{3}{5}$,cos(α+β)=-$\frac{4}{5}$,则sinβ=(  )
A.0B.$\frac{24}{25}$C.$\frac{16}{25}$D.$\frac{24}{25}$或$\frac{16}{25}$

分析 由已知分别求出cosα、sin(α+β)的值,然后利用“拆角配角”的方法分类求出sinβ,则答案可求.

解答 解:∵0<α<$\frac{π}{2}$,sinα=$\frac{3}{5}$,
∴cosα=$\sqrt{1-si{n}^{2}α}=\sqrt{1-(\frac{3}{5})^{2}}=\frac{4}{5}$.
∵0<α<$\frac{π}{2}$<β<π,∴$\frac{π}{2}$<α+β<$\frac{3π}{2}$.
又cos(α+β)=-$\frac{4}{5}$,
∴sin(α+β)=$±\sqrt{1-co{s}^{2}(α+β)}=±\frac{3}{5}$.
若sin(α+β)=$\frac{3}{5}$,则sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα=$\frac{3}{5}×\frac{4}{5}-(-\frac{4}{5})×\frac{3}{5}=\frac{24}{25}$;
若sin(α+β)=-$\frac{3}{5}$,则sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα=$(-\frac{3}{5})×\frac{4}{5}-(-\frac{4}{5})×\frac{3}{5}$=0(舍).
∴sinβ=$\frac{24}{25}$.
故选:B.

点评 本题考查两角和与差的正弦,体现了分类讨论的数学思想方法,关键是“拆角配角”思想的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3-3x2+3(1-m2)x,(0<m<1).
(Ⅰ) 求函数f(x)的极大值点和极小值点;
(Ⅱ) 若f(x)恰好有三个零点,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知公差不为0的等差数列{an}的前n项和为Sn,S7=70且a1,a2,a6成等比数列.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{{2{S_n}}}{n}$,求数列$\left\{\frac{1}{{b}_{n}{b}_{n+1}}\right\}前的n$项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在直二面角A-BD-C中,△ABD、△CBD均是以BD为斜边的等腰直角三角形,取AD中点E,将△ABE沿BE翻折到△A1BE,在△ABE的翻折过程中,下列不可能成立的是(  )
A.BC与平面A1BE内某直线平行B.CD∥平面A1BE
C.BC与平面A1BE内某直线垂直D.BC⊥A1B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设P为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的动点,F1、F2为椭圆C的焦点,I为△PF1F2的内心,则直线IF1和直线IF2的斜率之积(  )
A.是定值B.非定值,但存在最大值
C.非定值,但存在最小值D.非定值,且不存在最值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=(1-tanx)[1+\sqrt{2}sin(2x+\frac{π}{4})]$求
(1)函数f(x)的定义域和值域;
(2)若$f(\frac{α}{2})=\frac{8}{5},f(\frac{π+2β}{4})=\frac{24}{13}$,其中$α∈(0,\frac{π}{2}),β∈(-\frac{π}{2},0)$,求$f(\frac{α+β}{2})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙两地相距600千米,一辆货车从甲地匀速行驶到乙地,规定速度不超过100千米/小时.已知货车每小时的运输成本(单位:元)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为0.02;固定部分为m元.
(1)把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,货车应以多大速度匀速行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下列命题:
①函数y=cos($\frac{2}{3}$x+$\frac{π}{2}$)是奇函数;
②存在实数x,使sinx+cosx=2;
③若α,β是第一象限角且α<β,则tanα<tanβ;
其中正确命题的序号为①.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知定义域为R的奇函数y=f(x)的导函数为y=f'(x),当x≠0时,$f'(x)+\frac{f(x)}{x}>0$,若$a=\frac{1}{2}f({\frac{1}{2}})$,b=-2f(-2),$c=({ln\frac{1}{2}})f({ln\frac{1}{2}})$,则a,b,c的大小关系正确的是a<c<b.

查看答案和解析>>

同步练习册答案