分析 根据式子得出F(x)=xf(x)为R上的偶函数,利用$f'(x)+\frac{f(x)}{x}>0$,当x>0时,x•f′(x)+f(x)>0,当x<0时,x•f′(x)+f(x)<0,判断单调性即可证明a,b,c 的大小.
解答 解:∵定义域为R的奇函数y=f(x),
∴F(x)=xf(x)为R上的偶函数,
F′(x)=f(x)+xf′(x)
∵当x≠0时,$f'(x)+\frac{f(x)}{x}>0$,
∴当x>0时,x•f′(x)+f(x)>0,
当x<0时,x•f′(x)+f(x)<0,
即F(x)在(0,+∞)单调递增,在(-∞,0)单调递减.
F($\frac{1}{2}$)=a=$\frac{1}{2}$f($\frac{1}{2}$)=F(ln$\sqrt{e}$),F(-2)=b=-2f(-2)=F(2),F(ln$\frac{1}{2}$)=c=(ln$\frac{1}{2}$)f(ln$\frac{1}{2}$)=F(ln2),
∵ln$\sqrt{e}$<ln2<2,
∴F(ln$\sqrt{e}$)<F(ln2)<F(2).
即a<c<b.
故答案为:a<c<b.
点评 本题考查了导数在函数单调性的运用,根据给出的式子,得出需要的函数,运用导数判断即可,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{24}{25}$ | C. | $\frac{16}{25}$ | D. | $\frac{24}{25}$或$\frac{16}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | c<a<b | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com