精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)为定义在(0,+∞)上的连续可导函数,且f(x)>xf'(x),则不等式${x^2}f(\frac{1}{x})-f(x)<0$的解集是(0,1).

分析 令辅助函数F(x)=$\frac{f(x)}{x}$,求其导函数,据导函数的符号与函数单调性的关系判断出F(x)的单调性,利用单调性判断出,由不等式的关系,利用不等式的性质得到结论.

解答 解:令F(x)=$\frac{f(x)}{x}$,(x>0),
则F′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵f(x)>xf′(x),∴F′(x)<0,
∴F(x)为定义域上的减函数,
由不等式x2f($\frac{1}{x}$)-f(x)<0,
得:$\frac{f(\frac{1}{x})}{\frac{1}{x}}$<$\frac{f(x)}{x}$,
∴$\frac{1}{x}$>x,∴0<x<1,
故答案为:(0,1).

点评 本题考查了导数的运算,考查了利用导数研究函数单调性,函数的导函数符号确定函数的单调性:当导函数大于0时,函数单调递增;导函数小于0时,函数单调递减.此题为中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知定义域为R的奇函数y=f(x)的导函数为y=f'(x),当x≠0时,$f'(x)+\frac{f(x)}{x}>0$,若$a=\frac{1}{2}f({\frac{1}{2}})$,b=-2f(-2),$c=({ln\frac{1}{2}})f({ln\frac{1}{2}})$,则a,b,c的大小关系正确的是a<c<b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(n)=\left\{{\begin{array}{l}{{n^2},n为奇数}\\{-{n^2},n为偶数}\end{array}}\right.$,且an=f(n)+f(n+1),则a1+a2+a3+…+a2014=(  )
A.-2013B.-2014C.2013D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>0且a≠1,x∈(0,+∞),命题p:若a>1且x>1,则logax>0,在命题p、p的逆命题、p的否命题、p的逆否命题、¬p这5个命题中,真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的首项a1=3,an+1=2an+1(n∈N*).
(Ⅰ)写出数列{an}的前5项,并归纳猜想{an}的通项公式;
(Ⅱ)用数学归纳法证明(Ⅰ)中所猜想的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若下列关于x的方程x2+4ax-4a+3=0(a为常数),x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,则实数a的取值范围是(  )
A.$({-\frac{3}{2},-1})$B.$({-∞,-\frac{3}{2}}]∪[{-1,+∞})$C.(-2,0)D.$({-∞,-\frac{3}{2}}]∪[{0,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在正方体ABCD-A1B1C1D1中,点E1、F1分别是A1B1、C1D1的四等分点,求BE1与DF1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,点P到两点(0,-$\sqrt{3}$),(0,$\sqrt{3}$)的距离之和等于4.
(1)求点P的轨迹方程;
(2)设点P的轨迹为C,直线y=kx+1与C交于A,B两点,若$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f1(x)=cosx,f2(x)=coswx(w>0),f2(x)的图象可以看作是把f1(x)图象中的点的横坐标缩为原来的$\frac{1}{3}$(纵坐标不变)而得到的,则w=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.2D.3

查看答案和解析>>

同步练习册答案