精英家教网 > 高中数学 > 题目详情
4.终边在直线y=$\sqrt{3}$x上的角的集合为{α|α=60°+n•180°,n∈Z}.

分析 由直线方程求出直线的倾斜角,再分别写出终边落在直线向上和向下方向上的角的集合,由集合的并集运算求出终边落在直线y=$\sqrt{3}$x上的角的集合.

解答 解:∵直线y=$\sqrt{3}$x的斜率为,则倾斜角为60°,
∴终边落在射线y=$\sqrt{3}$x(x≥0)上的角的集合是S1={α|α=60°+k•360°,k∈Z},
终边落在射线y=$\sqrt{3}$x(x≤0)上的角的集合是S2={α|α=240°+k•360°,k∈Z},
∴终边落在直线y=$\sqrt{3}$x上的角的集合是:
S={α|α=60°+k•360°,k∈Z}∪{α|α=240°+k•360°,k∈Z}
={α|α=60°+2k•180°,k∈Z}∪{α|α=60°+(2k+1)•180°,k∈Z}
={α|α=60°+n•180°,n∈Z}.
故答案为:{α|α=60°+n•180°,n∈Z}.

点评 本题考查了终边相同角的集合求法,以及集合的并集的运算,需要将集合的元素化为统一的形式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=(x-1)3,x∈R,其中a,b∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3-3x2+3(1-m2)x,(0<m<1).
(Ⅰ) 求函数f(x)的极大值点和极小值点;
(Ⅱ) 若f(x)恰好有三个零点,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.复平面内$\frac{i}{1-i}$对应的点在第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.两个相关变量满足如下关系:
x1015202530
y1 0031 0051 0101 0111 014
则两变量的回归方程为(  )
A.$\widehat{y}$=0.56x+997.4B.$\widehat{y}$=0.63x-231.2C.$\widehat{y}$=0.56x+501.4D.$\widehat{y}$=60.4x+400.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足sinBcosA=-(2sinC+sinA)cosB.
(1)求角B的大小;
(2)求函数f(x)=2cos2x+cos(2x-B)在区间$[0,\frac{π}{2}]$上的最小值及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知公差不为0的等差数列{an}的前n项和为Sn,S7=70且a1,a2,a6成等比数列.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{{2{S_n}}}{n}$,求数列$\left\{\frac{1}{{b}_{n}{b}_{n+1}}\right\}前的n$项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在直二面角A-BD-C中,△ABD、△CBD均是以BD为斜边的等腰直角三角形,取AD中点E,将△ABE沿BE翻折到△A1BE,在△ABE的翻折过程中,下列不可能成立的是(  )
A.BC与平面A1BE内某直线平行B.CD∥平面A1BE
C.BC与平面A1BE内某直线垂直D.BC⊥A1B

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下列命题:
①函数y=cos($\frac{2}{3}$x+$\frac{π}{2}$)是奇函数;
②存在实数x,使sinx+cosx=2;
③若α,β是第一象限角且α<β,则tanα<tanβ;
其中正确命题的序号为①.

查看答案和解析>>

同步练习册答案