精英家教网 > 高中数学 > 题目详情
2.已知某物体的运动方程是S=t+$\frac{1}{9}$t3,则当t=3s时的瞬时速度是4m/s.

分析 求出位移的导数;将t=3代入;利用位移的导数值为瞬时速度;求出当t=3s时的瞬时速度.

解答 解:根据题意,S=t+$\frac{1}{9}$t3
则s′=1+$\frac{1}{3}$t2
将t=3代入得s′(3)=4;
故答案为:4

点评 本题考查导数在物理中的应用:位移的导数值为瞬时速度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.复平面内$\frac{i}{1-i}$对应的点在第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在直二面角A-BD-C中,△ABD、△CBD均是以BD为斜边的等腰直角三角形,取AD中点E,将△ABE沿BE翻折到△A1BE,在△ABE的翻折过程中,下列不可能成立的是(  )
A.BC与平面A1BE内某直线平行B.CD∥平面A1BE
C.BC与平面A1BE内某直线垂直D.BC⊥A1B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=(1-tanx)[1+\sqrt{2}sin(2x+\frac{π}{4})]$求
(1)函数f(x)的定义域和值域;
(2)若$f(\frac{α}{2})=\frac{8}{5},f(\frac{π+2β}{4})=\frac{24}{13}$,其中$α∈(0,\frac{π}{2}),β∈(-\frac{π}{2},0)$,求$f(\frac{α+β}{2})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙两地相距600千米,一辆货车从甲地匀速行驶到乙地,规定速度不超过100千米/小时.已知货车每小时的运输成本(单位:元)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为0.02;固定部分为m元.
(1)把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,货车应以多大速度匀速行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l经过点M(1,6),且倾斜角为$\frac{π}{3}$,圆C的方程是x2+y2-2x-24=0,直线l与圆C交于P1,P2两点.
(1)求圆心C到直线l的距离; 
(2)求P1,P2两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下列命题:
①函数y=cos($\frac{2}{3}$x+$\frac{π}{2}$)是奇函数;
②存在实数x,使sinx+cosx=2;
③若α,β是第一象限角且α<β,则tanα<tanβ;
其中正确命题的序号为①.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若实数x,y满足约束条件$\left\{\begin{array}{l}x-2y+3≥0\\ y≥x\\ x≥1\end{array}\right.$,则$z=\frac{y}{x+1}$的最小值为(  )
A.$\sqrt{3}$B.1C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知sin($\frac{π}{5}$-α)=$\frac{1}{4}$,则cos(2α+$\frac{3π}{5}$)=(  )
A.-$\frac{7}{8}$B.$\frac{7}{8}$C.$\frac{1}{8}$D.-$\frac{1}{8}$

查看答案和解析>>

同步练习册答案