【题目】已知
,
(1)求
在
处的切线方程以及
的单调性;
(2)对
,有
恒成立,求
的最大整数解;
(3)令
,若
有两个零点分别为
,![]()
且
为
的唯一的极值点,求证:
.
【答案】(1)切线方程为
;单调递减区间为
,单调递增区间为
(2)
的最大整数解为
(3)证明见解析
【解析】
(1)求出函数的导数,求出
,
即可得到切线方程,解
得到单调递增区间,解
得到单调递减区间,需注意在定义域范围内;
(2)
等价于
,求导分析
的单调性,即可求出
的最大整数解;
(3)由
,求出导函数分析其极值点与单调性,构造函数即可证明;
解:(1)![]()
所以定义域为![]()
;
;![]()
所以切线方程为
;
,
令
解得![]()
令
解得![]()
所以
的单调递减区间为
,单调递增区间为
.
(2)
等价于
;
,
记
,
,所以
为
上的递增函数,
且
,
,所以
,使得![]()
即
,
所以
在
上递减,在
上递增,
且
;
所以
的最大整数解为
.
(3)
,
得
,
当
,
,
,
;
所以
在
上单调递减,
上单调递增,
而要使
有两个零点,要满足
,
即
;
因为
,
,令![]()
,
由
,
,
即:
,
![]()
而要证
,
只需证
,
即证:![]()
即:
由
,
只需证:
,
令
,则![]()
令
,则![]()
![]()
故
在
上递增,
;
故
在
上递增,
;
.
科目:高中数学 来源: 题型:
【题目】某公司准备上市一款新型轿车零配件,上市之前拟在其一个下属4S店进行连续30天的试销.定价为1000元/件.试销结束后统计得到该4S店这30天内的日销售量(单位:件)的数据如下表:
日销售量 | 40 | 60 | 80 | 100 |
频数 | 9 | 12 | 6 | 3 |
(1)若该4S店试销期间每个零件的进价为650元/件,求试销连续30天中该零件日销售总利润不低于24500元的频率;
(2)试销结束后,这款零件正式上市,每个定价仍为1000元,但生产公司对该款零件不零售,只提供零件的整箱批发,大箱每箱有60件,批发价为550元/件;小箱每箱有45件,批发价为600元/件.该4S店决定每天批发两箱,根据公司规定,当天没销售出的零件按批发价的9折转给该公司的另一下属4S店.假设该4店试销后的连续30天的日销售量(单位:件)的数据如下表:
日销售量 | 50 | 70 | 90 | 110 |
频数 | 5 | 15 | 8 | 2 |
(ⅰ)设该4S店试销结束后连续30天每天批发两大箱,这30天这款零件的总利润;
(ⅱ)以总利润作为决策依据,该4S店试销结束后连续30天每天应该批发两大箱还是两小箱?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,
,
,
,若
.
⑴ 求函数
的最小正周期和单调递增区间;
⑵ 将函数
的图象上各点的横坐标伸长为原来的
倍(纵坐标不变),再将得到的图象向左平移
个单位,得到函数
的图象,求函数
在
上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)已知过原点的动直线
与圆
相交于不同的两点
,
.
(1)求圆
的圆心坐标;
(2)求线段
的中点
的轨迹
的方程;
(3)是否存在实数
,使得直线
与曲线
只有一个交点?若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为
,AB=2,AC=1,∠BAC=60°,则此球的表面积等于( )
A.8πB.9πC.10πD.11π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁、戊5个文艺节目在
三家电视台播放,要求每个文艺节目只能独家播放,每家电视台至少播放其中的一个,则不同的播放方案的种数为( )
A.150B.210C.240D.280
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为支援武汉的防疫,某医院职工踊跃报名,其中报名的医生18人,护士12人,医技6人,根据需要,从中抽取一个容量为n的样本参加救援队,若采用系统抽样和分层抽样,均不用剔除人员.当抽取n+1人时,若采用系统抽样,则需剔除1个报名人员,则抽取的救援人员为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com