精英家教网 > 高中数学 > 题目详情
9.已知x>0,y>0,x+y+$\frac{1}{x}$+$\frac{9}{y}$=10,求(x+y)min

分析 先设x+y=a,得到$\frac{1}{a}$(x+y)=1,从而有x+y+$\frac{1}{x}$+$\frac{9}{y}$=a+$\frac{16}{a}$,进而得到不等式10≥a+$\frac{16}{a}$,解出即可.

解答 解:设x+y=a,显然a>0,
则$\frac{1}{a}$(x+y)=1,
∴x+y+$\frac{1}{x}$+$\frac{9}{y}$
=a+$\frac{1}{a}$(x+y)($\frac{1}{x}$+$\frac{9}{y}$)
=a+$\frac{10}{a}$+$\frac{1}{a}$•2$\sqrt{\frac{9x}{y}•\frac{y}{x}}$
=a+$\frac{16}{a}$,
当且仅当3x=y时“=”成立,
∴10≥a+$\frac{16}{a}$,
∴a2-10a+16≤0,
解得:2≤a≤8.
∴(x+y)min=2.

点评 本题考查了基本不等式的性质,设x+y=a,得到$\frac{1}{a}$(x+y)=1是解题的关键,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=cos($\frac{π}{3}$+x)cos($\frac{π}{3}$-x)-sinxcosx+$\frac{1}{4}$.
(1)求函数f(x)的对称中心及在[-$\frac{π}{4}$,$\frac{π}{4}$]的取值范围;
(2)若△ABC为非直角三角形,a,b,c分别为A,B,C所对的边,f(A)=-$\frac{1}{2}$,b=1,S△ABC=2,求$\frac{a+b}{sinA+sinB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简:$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{{a}^{\frac{2}{3}}+2\root{3}{ab}+4{b}^{\frac{2}{3}}}$÷(a${\;}^{-\frac{2}{3}}$-$\frac{2\root{3}{b}}{a}$)•$\frac{\sqrt{a\root{3}{{a}^{2}}}}{\root{5}{\sqrt{a}•\root{3}{a}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若不等式(3-m)x2-6x+4>0对任意实数x均成立,求m的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知正方体ABCD-A1B1C1D1的棱长为6,点E、F分别是BB1、DD1的中点.
(1)求证:平面AEC1F⊥平面ACC1A1
(2)求多面体AEC1FA1B1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(x+$\frac{2}{x}$)4的展开式中的常数项等于24(用数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知全集U={(x,y)|y=x+1},A={(x,y)|y=x+1,-1<x<0},则点集∁UA表示的图形两条射线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛掷一枚质地均匀的骰子,所得点数的样本空间为S={1,2,3,4,5,6},令事件A={2,3,5},事件B={1,2,4,5,6},则P(A|B)的值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知动圆过定点F(0,$\frac{1}{4}$),且与定直线l:y=-$\frac{1}{4}$相切.
(1)求动圆圆心的轨迹曲线C的方程;
(2)若点A(x0,y0)是直线x-y-1=0上的动点,过点A作曲线C的切线,切点记为M,N.求证:直线MN恒过定点,并求△AMN面积S的最小值.

查看答案和解析>>

同步练习册答案