精英家教网 > 高中数学 > 题目详情
14.(x+$\frac{2}{x}$)4的展开式中的常数项等于24(用数值表示)

分析 在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得展开式的常数项.

解答 解:(x+$\frac{2}{x}$)4的展开式的通项公式为Tr+1=${C}_{4}^{r}$•2r•x4-2r,令4-2r=0,可得r=2,
故展开式的常数项为${C}_{4}^{2}$×4=24,
故答案为:24.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的实轴长为6,抛物线y2=20x的准线经过双曲线左焦点,过原点的直线与双曲线左、右两支分别交于A,B两点,P为双曲线上不同于A,B的任一点,当kPA,kPB存在时,kPA•kPB的值为(  )
A.$\frac{16}{9}$B.$\frac{4}{3}$C.$\frac{9}{16}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的最大值和最小值,以及使函数取得这些值的自变量x的值.
(1)y=$\frac{1}{1+co{s}^{2}x}$;
(2)y=$\frac{1}{5si{n}^{2}x+1}$;
(3)y=2-(sinx+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知(x-m)7=a0+a1x+a2x2+…+a7x7的展开式中x4的系数是-35,则a1+a2+a3+…+a7=(  )
A.1B.0C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x>0,y>0,x+y+$\frac{1}{x}$+$\frac{9}{y}$=10,求(x+y)min

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x+1)为定义在R上的偶函数,且当f(x)在[1,+∞)上为增函数,若a=20.1-1,b=1-2-0.1,则f(a)与f(b)的大小关系为(  )
A.f(a)>f(b)B.f(a)<f(b)
C.f(a)=f(b)D.f(a)与f(b)的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=x3+ax2+bx+c,那么下列结论中错误的是(  )
A.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)上单调递减
B.?x0∈R,使f(x0)=0
C.函数y=f(x)的图象可以是中心对称图形
D.若x0是f(x)的极值点,则f′(x0)=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}满足:a4n-3=1,a4n-1=-1,a2n=2an,n∈N*,则a2015=-1;前2015项中数值最大项与最小项的和=512.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列命题中,假命题是(  )
A.a>b的充要条件是a3>b3
B.?x∈[0,+∞),x2-3x+5>2$\sqrt{x}$
C.?x∈R,x2>0
D.“若xy≠6,则x≠2或x≠3”的逆否命题是“若x=2或x=3,则xy=6”

查看答案和解析>>

同步练习册答案