精英家教网 > 高中数学 > 题目详情
20.已知定义在(-1,1)上的奇函数f(x),当x∈(0,1)时,f(x)=x2-1,若f(x0)=$\frac{1}{2}$,则x0=-$\frac{\sqrt{2}}{2}$.

分析 利用奇函数的定义求出f(x)的解析式,令f(x0)=$\frac{1}{2}$得到方程解得.

解答 解:因为f(x)是奇函数,由x∈(0,1)时,f(x)=x2-1,当x∈(-1,0)时,f(x)=-x2+1,
所以$f({x_0})=\frac{1}{2}$时,${x_0}=-\frac{{\sqrt{2}}}{2}$.
故答案为:-$\frac{\sqrt{2}}{2}$.

点评 本题考查利用奇函数的定义求函数的解析式、解分段函数对应的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.下列函数中,哪些是互为反函数?
(1)y=x+1;
(2)y=x3
(3)y=$\root{3}{x}$;
(4)y=x-1;
(5)y=4x;
(6)y=$\frac{x}{4}$;
(7)y=$\frac{1}{x}$+1;
(8)y=$\frac{1}{x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在1到200这200个整数中既不是2的倍数,又不是3的倍数,也不是5的倍数的整数共有多少个?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.己知0<a<3,那么$\frac{1}{a}+\frac{9}{3-a}$的最小值是$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$f(x)=2sin(ωx+ϕ)(ω>0,-\frac{π}{2}<ϕ<\frac{π}{2})$的部分图象如图所示,则ω,ϕ的值为(  )
A.$2\;,\;\frac{2π}{3}$B.$2\;,\;-\frac{π}{3}$C.$1\;,\;\frac{π}{12}$D.$1\;,\;-\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的左焦点为F,点P为双曲线右支上的一点,且PF与圆x2+y2=9相切于点N,M为线段PF的中点,O 为坐标原点,则|MN|-|MO|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点和短轴顶点构成面积为2的正方形.
(I)求椭圆的标准方程;
(II)设A1,A2分别为椭圆C的左右顶点,F为右焦点,过A1的直线与椭圆相交于另一点P,与直线x=$\sqrt{2}$相交于点B,以A2B为直径作圆.判断直线PF和该圆的位置关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x>0,y>0,a=x+y,$b=\sqrt{{x^2}+xy+{y^2}}$,$c=m\sqrt{xy}$,若存在正数m使得对于任意正数x,y,可使a,b,c为三角形的三边构成三角形,则m的取值范围是(2-$\sqrt{3}$,2+$\sqrt{3}$).

查看答案和解析>>

同步练习册答案