精英家教网 > 高中数学 > 题目详情
11.双曲线焦点在坐标轴上,两条渐近线方程为2x±y=0,那么它的离心率是$\sqrt{5}$或$\frac{\sqrt{5}}{2}$.

分析 双曲线的焦点在x轴时,由渐近线方程可得b=2a,离心率e=$\frac{c}{a}$=$\sqrt{\frac{{a}^{2}+{b}^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$,当双曲线的焦点在y轴时,可得a=2b,同理即可求得焦点在y上的双曲线的离心率.

解答 解:当双曲线的焦点在x轴时,渐近线为y=±$\frac{b}{a}$x=±2x,即$\frac{b}{a}$=2,
变形可得b=2a,可得离心率e=$\frac{c}{a}$=$\sqrt{\frac{{a}^{2}+{b}^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{5}$,
当双曲线的焦点在y轴时,渐近线为y=±$\frac{a}{b}$x=±2x,即$\frac{a}{b}$=2,
变形可得a=2b,可得离心率e=$\frac{c}{a}$=$\sqrt{\frac{{a}^{2}+{b}^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{5}}{2}$,
∴双曲线的离心率为:$\sqrt{5}$或$\frac{\sqrt{5}}{2}$.
故答案为:$\sqrt{5}$或$\frac{\sqrt{5}}{2}$.

点评 本题考查双曲线的离心率,涉及双曲线的渐近线,和分类讨论的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.计算:${0.064^{-\frac{1}{3}}}-{(-\frac{1}{8})^0}+{16^{\frac{3}{4}}}+{0.25^{\frac{1}{2}}}$=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知两平行直线4x-2y+7=0,2x-y+1=0之间的距离等于坐标原点O到直线l:x-2y+m=0(m>0)的距离的一半.
(1)求m的值;
(2)判断直线l与圆C:x2+(y-2)2=$\frac{1}{5}$的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)对任意正整数a、b满足条件f(a+b)=f(a)•f(b)且f(1)=2,则$\frac{f(1)}{f(2)}$+$\frac{f(2)}{f(3)}$+$\frac{f(3)}{f(4)}$+…+$\frac{f(2016)}{f(2017)}$的值是1008.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|$\frac{1}{x}$-1|,其中x>0
(1)求f(x)的单调区间;
(2)是否存在实数a,b ( 0<a<b ),使得函数f(x)的定义域和值域都是[a,b]若存在,请求出a,b的值;若不存在,请说明理由;
(3)若存在实数a,b ( 0<a<b ),使得函数f(x)的定义域是[0,b],值域是[ma,mb]( m≠0 ),求实数 m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C的方程为x2+y2=4.
(1)求过点P (-1,2)与圆相切的直线I的方程;
(2)直线m过点P (-1,2),与圆C交于AB两点,且AB=$2\sqrt{3}$,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=2•ax-b+1(a>0且a≠1)的图象经过定点(2,3),则b的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.计算:(0.0081)${\;}^{-\frac{1}{4}}}$-10×0.027${\;}^{\frac{1}{3}}}$+lg$\frac{1}{4}$-lg25(  )
A.-$\frac{10}{3}$B.$\frac{25}{3}$C.-$\frac{5}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(Ⅰ) 已知lg2=a,lg3=b,试用a,b表示log1615;
(Ⅱ)若a>0,b>0,化简 $\frac{{(2{a^{\frac{2}{3}}}{b^{\frac{1}{2}}})(-6{a^{\frac{1}{2}}}{b^{-\;\frac{1}{3}}})}}{{-3\root{6}{ab}}}-(4a-1)$.

查看答案和解析>>

同步练习册答案