精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=2•ax-b+1(a>0且a≠1)的图象经过定点(2,3),则b的值是2.

分析 直接由指数函数的性质结合函数的图象平移得答案.

解答 解:函数y=2ax经过(0,2),
而函数f(x)=2•ax-b+1(a>0且a≠1)的图象是把y=2ax右移b个单位,且上移1个单位得到的,
且经过定点(2,3),
∴b=2.
故答案为:2.

点评 本题考查函数图象的平移,考查了指数函数的图象变换,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设f(x)=$\frac{x}{{e}^{x-1}}$,g(x)=ax+3-3a(a>0),若对于任意x1∈[0,2],总存在x0∈[0,2],使得g(x0)=f(x1)成立,则a的取值范围是(  )
A.[2,+∞)B.[1,2]C.[0,2]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设 a=log0.60.7,b=ln0.7,c=30.7,则a、b、c 由小到大的顺序是b<a<c.(用“<”连接)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.双曲线焦点在坐标轴上,两条渐近线方程为2x±y=0,那么它的离心率是$\sqrt{5}$或$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若定义在R上的偶函数f(x)在[0,+∞)内是增函数,且f(3)=0,则关于x的不等式x•f(x)≤0的解集为(  )
A.{x|-3≤x≤0或x≥3}B.{x|x≤-3或-3≤x≤0}C.{x|-3≤x≤3}D.{x|x≤-3或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=max{x2-ax+a,ax-a+1},其中max{x,y}=$\left\{\begin{array}{l}{y,x≤y}\\{x,x>y}\end{array}\right.$.
(Ⅰ)若对任意x∈R,恒有f(x)=x2-ax+a,求实数a的值;
(Ⅱ)若a>1,求f(x)的最小值m(a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列说法正确的是①③④⑤⑥(填上你认为正确的所有命题的序号)
①函数y=-sin(kπ+x)(k∈Z)是奇函数;
②函数y=2sin(2x+$\frac{π}{3}$)的图象关于点($\frac{π}{12}$,0)对称;
③函数y=2sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)的最小正周期是π;
④△ABC中,cosA>cosB充要条件是A<B; 
⑤函数y=cos2x+sinx的最小值是-1.
⑥y=|sin(2x+$\frac{π}{6}$)+1|最小正周期为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=x+2y的最大值为(  )
A.3B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax-|x+1|(x∈R).
(1)设函数g(x)为定义在R上的奇函数,且当x>0时,g(x)=f(x),求g(x)的解析式;
(2)若函数f(x)有最大值,求实数a的取值范围.

查看答案和解析>>

同步练习册答案