精英家教网 > 高中数学 > 题目详情
17.过异于原点的点P(x0,y0)引椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的割线PAB,其中点A.B在椭圆上,点M是割线PAB上异于P的一点,且满足$\frac{AM}{MB}$=$\frac{AP}{PB}$.
求证:点M在直线$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1上.

分析 设A(x1,y1),B(x2,y2),代入椭圆方程,设$\overrightarrow{AM}$=t$\overrightarrow{MB}$,$\overrightarrow{AP}$=-t$\overrightarrow{PB}$,M(x,y),运用向量的共线的坐标表示,计算
x0x,y0y,即可得证.

解答 证明:设A(x1,y1),B(x2,y2),
可得$\frac{{{x}_{1}}^{2}}{{a}^{2}}$+$\frac{{{y}_{1}}^{2}}{{b}^{2}}$=1,$\frac{{{x}_{2}}^{2}}{{a}^{2}}$+$\frac{{{y}_{2}}^{2}}{{b}^{2}}$=1,
设$\overrightarrow{AM}$=t$\overrightarrow{MB}$,$\overrightarrow{AP}$=-t$\overrightarrow{PB}$,M(x,y),
可得$\left\{\begin{array}{l}{x=\frac{{x}_{1}+t{x}_{2}}{1+t}}\\{y=\frac{{y}_{1}+t{y}_{2}}{1+t}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{0}=\frac{{x}_{1}-t{x}_{2}}{1-t}}\\{{y}_{0}=\frac{{y}_{1}-t{y}_{2}}{1-t}}\end{array}\right.$,
即有x0x=$\frac{{{x}_{1}}^{2}-{t}^{2}{{x}_{2}}^{2}}{1-{t}^{2}}$,y0y=$\frac{{{y}_{1}}^{2}-{t}^{2}{{y}_{2}}^{2}}{1-{t}^{2}}$,
则$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=$\frac{1}{1-{t}^{2}}$[($\frac{{{x}_{1}}^{2}}{{a}^{2}}$+$\frac{{{y}_{1}}^{2}}{{b}^{2}}$)-t2($\frac{{{x}_{2}}^{2}}{{a}^{2}}$+$\frac{{{y}_{2}}^{2}}{{b}^{2}}$)]
=$\frac{1}{1-{t}^{2}}$•(1-t2)=1.

点评 本题考查椭圆的方程和运用,考查向量的共线的坐标表示,以及化简整理的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,PD=2PA.
(1)证明:CD⊥平面PAC;
(2)若E为AD的中点,求证:CE∥平面PAB.
(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,一个焦点坐标为(2,0),离心率$e=\frac{{2\sqrt{5}}}{5}$.过椭圆的焦点F作与坐标轴不垂直的直线l,交椭圆于A,B两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设M(1,0),且$({\overrightarrow{MA}+\overrightarrow{MB}})⊥\overrightarrow{AB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.用若干块相同的小正方体搭成一个几何体,该几何几的三视图如图示,则搭成该几何体需要的小正方体的块数是(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,其右焦点关于直线y=x+1的对称点的纵坐标是2,椭圆C的右顶点为D.(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交于A、B两点(A、B与椭圆的左、右顶点不重合),且满足DA⊥DB,求直线l在x轴上的截距.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xlnx-k(x-1),k∈R.
(1)当k=1时,求函数f(x)的单调区间.
(2)若函数y=f(x)在区间(1,+∞)上有1个零点,求实数k的取值范围.
(3)是否存在正整数k,使得f(x)+x>0在x∈(1,+∞)上恒成立?若存在,求出k的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知动点P到点F(0,2)的距离与到抛物线x2=-16y的准线的距离之比为$\frac{\sqrt{2}}{2}$.
(I)求点p的轨迹方程E;
(Ⅱ)设斜率不为0的动直线l与曲线E有且只有一个公共点P,且与抛物线x2=-16y的准线交于点Q,试证明:以PQ为直径的圆恒过点F.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项的和为${S_n}={n^2}+n$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}={({\frac{1}{2}})^{a_n}}$,数列{bn}的前n项的和为Tn,若对一切n∈N*,均有${T_n}∈({\frac{1}{m+3},{m^2}-6m+\frac{25}{3}})$,求实数m的取值范围.

查看答案和解析>>

同步练习册答案