精英家教网 > 高中数学 > 题目详情

【题目】设函数是定义在 上的偶函数,当时, ).

(1)当时,求的解析式;

(2)若,试判断的上单调性,并证明你的结论;

(3)是否存在,使得当时, 有最大值.

【答案】(1);(2)详见解析;(3).

【解析】试题分析:(1)根据分段函数的奇偶性可得当时,求的解析式;(2)由于可得恒成立,得上为增函数,根据对称性得上为减函数;(3)讨论时,当时两种情况,研究单调性并求最值,舍去不合题意的情况,即可得结论.

试题解析: (1)设,则,又是偶函数, .

(2),又,即上为增函数.

(3)当时, 上是增函数, ,(不合题意,舍去).

时, ,令,如下表:

最大值

处取得最大值,满足条件,当时,

上单调递减, 无最大值,所以存在,使上有最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )

平均数≤3;标准差S≤2;平均数≤3且标准差S≤2;平均数≤3且极差小于或等于2;众数等于1且极差小于或等于1.

A.①② B.③④

C.③④⑤ D.④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计).易拉罐的体积为 ,设圆柱的高度为 ,底面半径为 ,且.假设该易拉罐的制造费用仅与其表面积有关.已知易拉罐侧面制造费用为元/ ,易拉罐上下底面的制造费用均为元/ 为常数,且).

(1)写出易拉罐的制造费用(元)关于的函数表达式,并求其定义域;

(2)求易拉罐制造费用最低时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+a2.

(I)若f(x)在x=1处有极值10,求a,b的值;

(II)若当a=-1时,f(x)<0在x∈[1,2]恒成立,求b的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的函数y=2cos2x-2acosx-(2a+1)的最小值为f(a),试确定满足f(a)=的a的值,并求此时函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a是实数,函数f(x)= (x-a).

(1)求函数f(x)的单调区间;

(2)设g(a)为f(x)在区间[0,2]上的最小值.

①写出g(a)的表达式;

②求a的取值范围,使得-6≤g(a)≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3x2x(0<a<1,x∈R).若对于任意的三个实数x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式-kx+1≤0的解集非空,则k的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:

(1)求回归直线方程;

(2)试预测广告费支出为万元时,销售额多大?

(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过的概率.(参考数据: .

查看答案和解析>>

同步练习册答案