精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3x2x(0<a<1,x∈R).若对于任意的三个实数x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求实数a的取值范围.

【答案】见解析

【解析】 因为f′(x)=x2x+ (x+a-2),所以令f′(x)=0,

解得x1,x2=2-a.

由0<a<1,知1<2-a<2.

所以令f′(x)>0,得x<,或x>2-a;

令f′(x)<0,得<x<2-a,

所以函数f(x)在(1,2-a)上单调递减,在(2-a,2)上单调递增.

所以函数f(x)在[1,2]上的最小值为f(2-a)= (2-a)2,最大值为max{f(1),f(2)}=max.

因为当0<a≤时,a;

<a<1时,a>

由对任意x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,得2f(x)min>f(x)max(x∈[1,2]).

所以当0<a≤时,必有2× (2-a)2>

结合0<a≤可解得1-<a≤

<a<1时,必有2× (2-a)2>a,

结合<a<1可解得<a<2-.

综上,知所求实数a的取值范围是1-<a<2-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,算得

,,,.

(1)求家庭的月储蓄对月收入的线性回归方程;

(2)判断变量之间是正相关还是负相关;

(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

其中,为样本平均值,线性回归方程也可写为

附:线性回归方程中,,,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3-3ax+e,g(x)=1-lnx,其中e为自然对数的底数.

(I)若曲线y=f(x)在点(1,f(1))处的切线与直线l:x+2y=0垂直,求实数a的值;

(II)设函数F(x)=-x[g(x)+x-2],若F(x)在区间(m,m+1)(m∈Z)内存在唯一的极值点,求m的值;

(III)用max{m,n}表示m,n中的较大者,记函数h(x)=max{f(x),g(x)}(x>0). 若函数h(x)在(0,+∞)上恰有2个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在 上的偶函数,当时, ).

(1)当时,求的解析式;

(2)若,试判断的上单调性,并证明你的结论;

(3)是否存在,使得当时, 有最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.

(1)求抛物线的方程;

(2)以M为圆心,MB为半径作圆M,当K(m,0)是x轴上一动点时,讨论直线AK与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心为原点,且与直线 相切.

(1)求圆C的方程;

(2)点在直线上,过点引圆C的两条切线 ,切点为 ,求证:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理是合情推理的是

①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,则该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸多边形的内角和是(n-2)·180°___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值

(1)求函数的解析式;

(2)设函数,若对任意的,总存在唯一的为自然对数的底数)使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C所对的边分别为a,b,c,且2S△ABC·.

(1)求角B的大小;

(2)若b=2,求a+c的取值范围.

查看答案和解析>>

同步练习册答案