精英家教网 > 高中数学 > 题目详情

【题目】从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,算得

,,,.

(1)求家庭的月储蓄对月收入的线性回归方程;

(2)判断变量之间是正相关还是负相关;

(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

其中,为样本平均值,线性回归方程也可写为

附:线性回归方程中,,,

【答案】(1) (2) 之间是正相关;(3)

【解析】

试题分析:(1)根据线性回归方程公式先求,再求即可得所求方程。(2)线性回归方程的斜率大于0,变量之间是正相关。斜率小于0,变量之间是相关(3) 直接代入回归方程即可。

试题解析: (1)由题意知

,由此得

故所求回归方程为

(2)由于变量的值随的值增加而增加,故之间是正相关。

(3)代入回归方程可以榆次该家庭的月储蓄为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过曲线C1=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,直线F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为( )

A. B. -1 C. +1 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求的极值;

(2)令,求函数的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )

平均数≤3;标准差S≤2;平均数≤3且标准差S≤2;平均数≤3且极差小于或等于2;众数等于1且极差小于或等于1.

A.①② B.③④

C.③④⑤ D.④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市出租车的现行计价标准是:路程在2 km以内(含2 km)按起步价8元收取,超过2 km后的路程按1.9 元/km收取,但超过10 km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85(元/km))

(1)将某乘客搭乘一次出租车的费用f(x)(单位:元)表示为行程x(0<x≤60,单位:km)的分段函数;

(2)某乘客的行程为16 km,他准备先乘一辆出租车行驶8 km后,再换乘另一辆出租车完成余下行程,请问:他这样做是否比只乘一辆出租车完成全部行程更省钱?

(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们知道,如果集合AS,那么S的子集A的补集为SA={x|xS,且xA}.类似地,对于集合AB,我们把集合{x|xA,且xB}叫作集合AB的差集,记作AB.据此回答下列问题:

(1)若A={1,2,3,4},B={3,4,5,6},求AB

(2)在下列各图中用阴影表示集合AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x-3|-|x+1|,x∈R.

(1)解不等式f(x)<-1;

(2)设函数g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计).易拉罐的体积为 ,设圆柱的高度为 ,底面半径为 ,且.假设该易拉罐的制造费用仅与其表面积有关.已知易拉罐侧面制造费用为元/ ,易拉罐上下底面的制造费用均为元/ 为常数,且).

(1)写出易拉罐的制造费用(元)关于的函数表达式,并求其定义域;

(2)求易拉罐制造费用最低时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3x2x(0<a<1,x∈R).若对于任意的三个实数x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案