精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)满足f(2+x)=f(2-x),f(0)=3;方程f(x)=0有两个实根,且两实根的平方和为10.
(1)求函数f(x)的解析式;
(2)若关于x的方程f(x)-2m=0在区间[0,3]内有根,求实数m的取值范围.
分析:(1)由题意可得:设f(x)=ax2+bx+c(a≠0),方程ax2+bx+c=0的两根为x1,x2,所以结合题意可得a=1,b=-4,c=3,进而得到函数的解析式.
(2)根据二次函数的性质可得:函数的单调性,结合方程f(x)=2m有解可得-1≤2m≤3,进而求出m的范围.
解答:解:(1)由题意可得:设f(x)=ax2+bx+c(a≠0),方程ax2+bx+c=0的两根为x1,x2
所以
x
2
1
+
x
2
2
=(x1+x2)2-2x1x2=(-
b
a
)2-2×
c
a

根据题意可得:
-
b
2a
=2
c=3
(
b
a
)2-
2c
a
=10
?
a=1
b=-4
c=3

所以函数的解析式为f(x)=x2-4x+3.
(2)根据二次函数的性质可得:f(x)在(0,2)为减函数,(2,3)为增函数,
∴f(x)min=f(2)=-1,f(x)max=f(0)=3.
∴f(x)∈[-1,3].
由f(x)=2m
所以-1≤2m≤3,即-
1
2
≤m≤
3
2

实数m的取值范围为-
1
2
≤m≤
3
2
点评:解决此类问题的关键是熟练掌握求函数解析式的方法,以及二次函数的有关性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案