【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占
.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
(1)求出
的值;
(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求这2组恰好抽到2人的概率.
【答案】(1)
(2)平均数为41.5,中位数为
(3)![]()
【解析】试题分析:(1)利用频率分布直方图可得
的值;(2)平均数为;
岁;设中位数为
,则
岁;(3)第1,2,3组的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为
. 设从5人中随机抽取3人,共10个基本事件,从而得到第2组中抽到2人的概率.
试题解析:
(1)由
,得
.
(2)平均数为;
岁;
设中位数为
,则
岁.
(3)第1,2,3组的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为
.
设从5人中随机抽取3人,为
,
共10个基本事件,从而第2组中抽到2人的概率
.
科目:高中数学 来源: 题型:
【题目】如图:已知四棱锥P—ABCD的底面ABCD是平行四边形,PA⊥面ABCD,M是AD的中点,N是PC的中点.
![]()
(1)求证:MN∥面PAB;
(2)若平面PMC⊥面PAD,求证:CM⊥AD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地建一座桥,两端的桥墩已建好,这两墩相距640米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为
米的相邻两墩之间的桥面工程费用为
万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,设需要新建
个桥墩,记余下工程的费用为
万元.
(1)试写出
关于
的函数关系式;(注意:
)
(2)需新建多少个桥墩才能使
最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图
,在矩形
中,
,
为
的中点,
为
的中点.将
沿
折起到
,使得平面
平面
(如图
).
![]()
图1 图2
(Ⅰ)求证:
;
(Ⅱ)求直线
与平面
所成角的正弦值;
(Ⅲ)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,对任意的正整数n,都有Sn=
an+n-3成立.
(1)求证:存在实数λ使得数列{an+λ}为等比数列;
(2)求数列{nan}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,对任意的正整数
,都有
成立,记
.
(1)求数列
与数列
的通项公式;
(2)记
,设数列
的前
项和为
,求证:对任意正整数
,都有
;
(3)设数列
的前
项和为
,是否存在正整数
,使得
成立?若存在,找出一个正整数
;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com