精英家教网 > 高中数学 > 题目详情
16.在极坐标系中,已知圆C的方程是ρ=4,直线l的方程是$ρsin(θ+\frac{π}{4})=\sqrt{2}$.
(1)将直线l与圆C的极坐标方程化为直角坐标方程
(2)求直线l与圆C相交所得的弦长.

分析 (1)利用三种方程的互化方法将直线l与圆C的极坐标方程化为直角坐标方程
(2)求出圆心到直线的距离,即可求直线l与圆C相交所得的弦长.

解答 解:(1)直线l的方程是$ρsin(θ+\frac{π}{4})=\sqrt{2}$,即ρcosθ+ρsinθ=2,直角坐标方程x+y-2=0;
圆C的方程是ρ=4,直角坐标方程是x2+y2=16,半径等于4.
(2)圆心到直线的距离d=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,弦长为2$\sqrt{16-2}$=2$\sqrt{14}$.

点评 本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式,直线和圆的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是边长为2的正方形,PD=DC,E,F分别是AB,PB的中点.
(1)求证:EF⊥CD;
(2)在平面PAD内求一点G,使FG⊥平面PCB,并证明你的结论;
(3)求三棱锥B-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数ft(x)=(x-t)2-t,t∈R,设f(x)=$\left\{{\begin{array}{l}{{f_a}(x),{f_a}(x)<{f_b}(x)}\\{{f_b}(x),{f_a}(x)≥{f_b}(x)}\end{array}}$,若0<a<b,则(  )
A.f(x)≥f(b)且当x>0时f(b-x)≥f(b+x)B.f(x)≥f(b)且当x>0时f(b-x)≤f(b+x)
C.f(x)≥f(a)且当x>0时f(a-x)≥f(a+x)D.f(x)≥f(a)且当x>0时f(a-x)≤f(a+x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆心为(3,4)的圆N被直线x=1截得的弦长为2$\sqrt{5}$.
(1)求圆N的方程;
(2)若过点D(3,6)的直线l被圆N截得的弦长为4$\sqrt{2}$,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知底面半径为r,高为4r的圆柱的侧面积等于半径为R的球的表面积,则$\frac{R}{r}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a=20.5,b=logπ3,c=-log23,则(  )
A.a<c<bB.c<a<bC.c<b<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知各项均不相等的等差数列{an}的前五项和S5=20,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某制瓶厂要制造一批轴截面如图所示的瓶子,瓶子是按照统一规格设计的,瓶体上部为半球体,下部为圆柱体,并保持圆柱体的容积为3π.设圆柱体的底面半径为x,圆柱体的高为h,瓶体的表面积为S.
(1)写出S关于x的函数关系式,并写出定义域;
(2)如何设计瓶子的尺寸(不考虑瓶壁的厚度),可以使表面积S最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,矩形草坪AMPN中,点C在对角线MN上.CD垂直于AN于点D,CB垂直于AM于点B,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x米,|BM|=y米.求这块矩形草坪AMPN面积的最小值.

查看答案和解析>>

同步练习册答案