精英家教网 > 高中数学 > 题目详情
已知函数.
(1)求函数上的最大值和最小值;
(2)求证:当时,函数的图像在的下方.
(1)的最小值是,最大值是;(2)证明详见解析.

试题分析:(1)先求导函数,由导函数的符号确定上的单调性,进而确定函数的最值即可;(2)本题的实质是证明在区间恒成立,然后利用导数研究其最大值即可.
试题解析:(1)∵,∴
时,,故上是增函数
的最小值是,最大值是
(2)证明:令


时,,而

上是减函数
,即
∴当时,函数的图像总在的图像的下方.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点为圆心的两个同心圆弧、弧以及两条线段围成的封闭图形.花坛设计周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米(),圆心角为弧度.

(1)求关于的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,当为何值时,取得最大值?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为,高,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大(高不变);二是高度增加(底面直径不变)。
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积(地面无需用材料);
(3)哪个方案更经济些?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2013•湖北)已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是(  )
A.(﹣∞,0)B.(0,C.(0,1)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数的定义域为R,若存在常数M>0,使对 一切实数x均成 立,则称为“倍约束函数”,现给出下列函数:①:②:③;④  ⑤是定义在实数集R上的奇函数,且
对一切均有,其中是“倍约束函数”的有(    )
A.1个 B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为实常数).
(1)若函数在区间上是增函数,试用函数单调性的定义求实数的取值范围;
(2)设,若不等式有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列所给4个图象中,与所给3件事吻合最好的顺序为(   )

(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;
(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;
(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
A.(1)(2)(4)B.(4)(2)(3)C.(4)(1)(3)D.(4)(1)(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数满足:对定义域内的任意,都有,则函数可以是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则上的零点个数(   )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案