精英家教网 > 高中数学 > 题目详情
11.设i为虚数单位,若2+ai=b-3i(a、b∈R),则a+bi=-3+2i.

分析 直接由2+ai=b-3i(a、b∈R),求出a,b的值得答案.

解答 解:由2+ai=b-3i(a、b∈R),
得a=-3,b=2.
则a+bi=-3+2i.
故答案为:-3+2i.

点评 本题考查了复数相等的充要条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知点$M({-6,3\sqrt{5}})$在双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的渐近线上,C的焦距为12,则C的方程为(  )
A.$\frac{x^2}{8}-\frac{y^2}{10}=1$B.$\frac{x^2}{10}-\frac{y^2}{8}=1$C.$\frac{x^2}{16}-\frac{y^2}{20}=1$D.$\frac{x^2}{20}-\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C的对称中心为坐标原点O,焦点在x轴上,左右焦点分别为F,F,左右顶点分别为A,B,且|F1F2|=4,|AB|=4$\sqrt{2}$
(1)求椭圆的方程;
(2)过F1的直线l与椭圆C相交于M,N两点,若△MF2N的面积为$\frac{16}{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合P={x|x2-x-2≥0},Q={x|$\frac{x-1}{x-3}$|<0},则P∩Q={x|2≤x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为了解某地房价环比(所谓环比,简单说就是与相连的上一期相比)涨幅情况,如表记录了某年1月到5月的月份x(单位:月)与当月上涨的百比率y之间的关系:
时间x12345
上涨率y0.10.20.30.30.1
(1)根据如表提供的数据,求y关于x的线性回归方程y=$\widehat{b}$x+$\widehat{a}$;
(2)预测该地6月份上涨的百分率是多少?
(参考公式:用最小二乘法求线性回归方程系数公式$\widehat{b}$=$\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{({{x_i}{y_i}})-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线C:y=2x2和直线l:y=kx+1,O为坐标原点.
(1)求证:l与C必有两交点;
(2)设l与C交于A(x1,y1)、B(x2,y2)两点,且直线OA和OB的斜率之和为1,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若x、y满足约束条件$\left\{\begin{array}{l}{x+2y≤1}\\{2x+y≥-1}\\{x-y≤0}\end{array}\right.$,则z=3x-2y的最小值为(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在中秋的促销活动中,某商场对9月14日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为7万元,则10时到11时的销售额为(  )
A.1万元B.2万元C.3万元D.4万元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设θ∈R,则“sinθ=0”是“sin2θ=0”的充分不必要条件.(选填:充分不必要、必要不充分、充要、既不充分也不必要)

查看答案和解析>>

同步练习册答案