| A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | -5 | D. | 5 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x+2y≤1}\\{2x+y≥-1}\\{x-y≤0}\end{array}\right.$作出可行域如图:![]()
联立$\left\{\begin{array}{l}{x+2y=1}\\{2x+y=-1}\end{array}\right.$,解得A(-1,1).
化目标函数z=3x-2y为y=$\frac{3}{2}x-\frac{z}{2}$,
由图可知,当直线y=$\frac{3}{2}x-\frac{z}{2}$过A时,直线在y轴上的截距最大,
z有最小值为-5.
故选:C.
点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-8) | B. | (-∞,-8] | C. | (-∞,-6) | D. | (-∞,-6] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 输入一个实数x,求它的绝对值 | |
| B. | 求面积为6的正方形的周长 | |
| C. | 求三个数a、b、c中的最大数 | |
| D. | 求函数f(x)=$\left\{\begin{array}{l}{-x-1,x<-1}\\{x+1,x≥-1}\end{array}\right.$的值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$b2-$\frac{1}{6}$b3 | B. | $\frac{3}{2}$b-$\frac{2}{3}$ | C. | 0 | D. | 2b-$\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 8π | C. | 16π | D. | 32π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com