精英家教网 > 高中数学 > 题目详情
3.若x、y满足约束条件$\left\{\begin{array}{l}{x+2y≤1}\\{2x+y≥-1}\\{x-y≤0}\end{array}\right.$,则z=3x-2y的最小值为(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-5D.5

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x+2y≤1}\\{2x+y≥-1}\\{x-y≤0}\end{array}\right.$作出可行域如图:

联立$\left\{\begin{array}{l}{x+2y=1}\\{2x+y=-1}\end{array}\right.$,解得A(-1,1).
化目标函数z=3x-2y为y=$\frac{3}{2}x-\frac{z}{2}$,
由图可知,当直线y=$\frac{3}{2}x-\frac{z}{2}$过A时,直线在y轴上的截距最大,
z有最小值为-5.
故选:C.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=mlnx+8x-x2在[3,+∞)上单调递减,则实数m的取值范围为(  )
A.(-∞,-8)B.(-∞,-8]C.(-∞,-6)D.(-∞,-6]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-3x.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若关于x的方程f(x)=k有3个实根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设i为虚数单位,若2+ai=b-3i(a、b∈R),则a+bi=-3+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的两个焦点是F1(-2,0),F2(2,0),且椭圆C经过点A(0,$\sqrt{5}$).
(1)求椭圆C的标准方程;
(2)若过椭圆C的左焦点F1(-2,0)且斜率为1的直线l与椭圆C交于P、Q两点,求线段PQ的长(提示:|PQ|=$\sqrt{1+{k}^{2}}$|x1-x2|).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出的以下四个问题中,不需要用条件语句来描述其算法是(  )
A.输入一个实数x,求它的绝对值
B.求面积为6的正方形的周长
C.求三个数a、b、c中的最大数
D.求函数f(x)=$\left\{\begin{array}{l}{-x-1,x<-1}\\{x+1,x≥-1}\end{array}\right.$的值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=$\frac{1}{3}$x3-(1+$\frac{b}{2}$)x2+2bx在区间[3,5]上不是单调函数,则函数f(x)在R上的极大值为(  )
A.$\frac{2}{3}$b2-$\frac{1}{6}$b3B.$\frac{3}{2}$b-$\frac{2}{3}$C.0D.2b-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2+bx+1(a,b∈R).
(1)若f(-1)=0,且对任意实数,恒有f(x)≥0,求a,b的值;
(2)在(1)的条件下,若g(x)=f(x)-kx在[-2,2]上单调函数,求实数k的取值范围;
(3)若f(x)在R上为偶函数,且F(x)=$\left\{\begin{array}{l}{f(x),当x>0时}\\{-f(x),当x<0时}\end{array}\right.$,试判断F(x)奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知半径是r的球的体积公式为V=$\frac{4π}{3}{r}^{3}$,则当r=2时,球的体积V对于半径r的变化率是(  )
A.B.C.16πD.32π

查看答案和解析>>

同步练习册答案