精英家教网 > 高中数学 > 题目详情
20.在中秋的促销活动中,某商场对9月14日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为7万元,则10时到11时的销售额为(  )
A.1万元B.2万元C.3万元D.4万元

分析 由频率分布直方图求出12时到14时的销售额所占频率和10时到11时的销售额所占频率,由此利用12时到14时的销售额为7万元,能求出10时到11时的销售额.

解答 解:由频率分布直方图得:
12时到14时的销售额所占频率为0.25+0.1=0.35,
10时到11时的销售额所占频率为:1-0.1-0.4-0.25-0.1=0.15,
∵12时到14时的销售额为7万元,
∴10时到11时的销售额为:$\frac{7×0.15}{0.35}$=3(万元).
故选:C.

点评 本题考查销售额的求法,是基础题,解题时要认真审题,注意频数分布直方图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.定义在R上的函数f(x)满足f(x+2)=f(x),当x∈(-1,1]时,f(x)=x2,g(x)=$\left\{\begin{array}{l}{log_3}(x-1),x>1\\{2^x},x≤1\end{array}$,那么函数h(x)=f(x)-g(x)在区间[-5,5]上零点的个数为(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设i为虚数单位,若2+ai=b-3i(a、b∈R),则a+bi=-3+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出的以下四个问题中,不需要用条件语句来描述其算法是(  )
A.输入一个实数x,求它的绝对值
B.求面积为6的正方形的周长
C.求三个数a、b、c中的最大数
D.求函数f(x)=$\left\{\begin{array}{l}{-x-1,x<-1}\\{x+1,x≥-1}\end{array}\right.$的值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=$\frac{1}{3}$x3-(1+$\frac{b}{2}$)x2+2bx在区间[3,5]上不是单调函数,则函数f(x)在R上的极大值为(  )
A.$\frac{2}{3}$b2-$\frac{1}{6}$b3B.$\frac{3}{2}$b-$\frac{2}{3}$C.0D.2b-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数f(x)=sin2x的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后得到函数g(x)的图象,若函数g(x)在区间[0,$\frac{π}{3}$]上单调递增,则φ的取值范围是(  )
A.[$\frac{π}{12}$,$\frac{π}{4}$]B.[$\frac{π}{6}$,$\frac{5π}{12}$)C.[$\frac{π}{6}$,$\frac{π}{3}$]D.[$\frac{π}{6}$,$\frac{π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2+bx+1(a,b∈R).
(1)若f(-1)=0,且对任意实数,恒有f(x)≥0,求a,b的值;
(2)在(1)的条件下,若g(x)=f(x)-kx在[-2,2]上单调函数,求实数k的取值范围;
(3)若f(x)在R上为偶函数,且F(x)=$\left\{\begin{array}{l}{f(x),当x>0时}\\{-f(x),当x<0时}\end{array}\right.$,试判断F(x)奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A,右焦点为F,上顶点为B,下顶点为C,若直线AB与直线CF的交点为(3a,16).
(1)求椭圆C的标准方程;
(2)点P(m,0)为椭圆C的长轴上的一个动点,过点P且斜率为$\frac{4}{5}$的直线l交椭圆C于S,T两点,证明:|PS|2+|PT|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=1-ex的图象与x轴相交于点P,则曲线在点P处的切线方程为(  )
A.ex+y=0B.ex-y=0C.x+y=0D.y-x=0

查看答案和解析>>

同步练习册答案