精英家教网 > 高中数学 > 题目详情
20.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A,右焦点为F,上顶点为B,下顶点为C,若直线AB与直线CF的交点为(3a,16).
(1)求椭圆C的标准方程;
(2)点P(m,0)为椭圆C的长轴上的一个动点,过点P且斜率为$\frac{4}{5}$的直线l交椭圆C于S,T两点,证明:|PS|2+|PT|2为定值.

分析 (1)推导出直线AB的方程为y=$\frac{b}{a}x+b$,直线CF的方程为y=$\frac{b}{a}x$-b.把点(3a,16)分别代入直线的方程$\left\{\begin{array}{l}{16=\frac{b}{a}×3a+b}\\{16=\frac{b}{c}×3a-b}\end{array}\right.$,b=4,且3a=5c,由此能求出椭圆的标准方程.
(2)设直线的方程为x=$\frac{5}{4}y+m$,代入$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1,得:25y2+20my+8(m2-25)=0,由此利用韦达定理、弦长公式,结合已知条件能证明PS|2+|PT|2是定值.

解答 解:(1)由椭圆C的左顶点A(-a,0),上下顶点坐标为B(0,b),C(0,-b),
右焦点为F(c,0),则直线AB的方程为y=$\frac{b}{a}x+b$,
直线CF的方程为y=$\frac{b}{a}x$-b.
又∵直线AB与直线CF的交点为(3a,16),
把点(3a,16)分别代入直线的方程$\left\{\begin{array}{l}{16=\frac{b}{a}×3a+b}\\{16=\frac{b}{c}×3a-b}\end{array}\right.$,
解得b=4,且3a=5c,
又∵a2=b2+c2,解得a=5,
∴椭圆的标准方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1.
(2)设直线的方程为x=$\frac{5}{4}y+m$,代入$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1,
并整理得:25y2+20my+8(m2-25)=0,
设S(x1,y1),T(x2,y2),则${y}_{1}+{y}_{2}=-\frac{4}{5}m$,${y}_{1}{y}_{2}=\frac{8({m}^{2}-25)}{25}$,
又∵|PS|2=(x1-m)2+y12=$\frac{41}{6}{{y}_{1}}^{2}$,
同理,|PT|2=$\frac{41}{6}{{y}_{2}}^{2}$,
则|PS|2+|PT|2=$\frac{41}{16}({{y}_{1}}^{2}+{{y}_{2}}^{2})$=$\frac{41}{16}[({y}_{1}+{y}_{2})^{2}-2{y}_{1}{y}_{2}]$=$\frac{41}{16}[(-\frac{4m}{5})^{2}-\frac{16({m}^{2}-25)}{25}]$=41,
∴|PS|2+|PT|2是定值.

点评 本题考查椭圆方程求法,考查两线段和平方和为定值的证明,考查椭圆、韦达定理、根的判别式、直线方程、弦长公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知集合P={x|x2-x-2≥0},Q={x|$\frac{x-1}{x-3}$|<0},则P∩Q={x|2≤x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在中秋的促销活动中,某商场对9月14日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为7万元,则10时到11时的销售额为(  )
A.1万元B.2万元C.3万元D.4万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若复数z满足z(1+i)=|1+$\sqrt{3}$i|,则z的共轭复数在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设复数z1,z2在复平面内对应的点关于实轴对称,z1=2+i,则$\frac{z_1}{z_2}$=$\frac{3}{5}$+$\frac{4}{5}$i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=mx2-mx-1
(1)若对于x∈R,f(x)<0恒成立,求实数m的取值范围;
(2)若?x∈[1,3]使得f(x)<5-m成立,求实数m的取值范围.
(3)解关于x的不等式f(x)≤x-2(m≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设θ∈R,则“sinθ=0”是“sin2θ=0”的充分不必要条件.(选填:充分不必要、必要不充分、充要、既不充分也不必要)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数m,n∈{1,2,3,4},若m≠n,则函数$f(x)=|{m-n}|{x^{\frac{n}{m}}}$为幂函数且为偶函数的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A={x|x2>x},B={-1,0,1,2},则A∩B=(  )
A.{0,2}B.{0,1}C.{-1,2}D.{1,2}

查看答案和解析>>

同步练习册答案