精英家教网 > 高中数学 > 题目详情
15.设复数z1,z2在复平面内对应的点关于实轴对称,z1=2+i,则$\frac{z_1}{z_2}$=$\frac{3}{5}$+$\frac{4}{5}$i.

分析 由题意可得z2=2-i,再由复数的除法运算法则,计算即可得到所求.

解答 解:复数z1,z2在复平面内对应的点关于实轴对称,z1=2+i,
可得z2=2-i,
则$\frac{z_1}{z_2}$=$\frac{2+i}{2-i}$=$\frac{(2+i)(2+i)}{(2-i)(2+i)}$=$\frac{3+4i}{4+1}$=$\frac{3}{5}$+$\frac{4}{5}$i.
故答案为:$\frac{3}{5}$+$\frac{4}{5}$i.

点评 本题考查复数的乘除运算,注意运用共轭复数的概念,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-3x.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若关于x的方程f(x)=k有3个实根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=$\frac{1}{3}$x3-(1+$\frac{b}{2}$)x2+2bx在区间[3,5]上不是单调函数,则函数f(x)在R上的极大值为(  )
A.$\frac{2}{3}$b2-$\frac{1}{6}$b3B.$\frac{3}{2}$b-$\frac{2}{3}$C.0D.2b-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2+bx+1(a,b∈R).
(1)若f(-1)=0,且对任意实数,恒有f(x)≥0,求a,b的值;
(2)在(1)的条件下,若g(x)=f(x)-kx在[-2,2]上单调函数,求实数k的取值范围;
(3)若f(x)在R上为偶函数,且F(x)=$\left\{\begin{array}{l}{f(x),当x>0时}\\{-f(x),当x<0时}\end{array}\right.$,试判断F(x)奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex-ax-1(a∈R)
(1)讨论f(x)的单调性;
(2)设函数g(x)=x2-x,当x>0时,f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A,右焦点为F,上顶点为B,下顶点为C,若直线AB与直线CF的交点为(3a,16).
(1)求椭圆C的标准方程;
(2)点P(m,0)为椭圆C的长轴上的一个动点,过点P且斜率为$\frac{4}{5}$的直线l交椭圆C于S,T两点,证明:|PS|2+|PT|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.从写上0,1,2,…,9 十张卡片中,有放回地每次抽一张,连抽两次,则两张卡片数字各不相同的概率是$\frac{9}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知半径是r的球的体积公式为V=$\frac{4π}{3}{r}^{3}$,则当r=2时,球的体积V对于半径r的变化率是(  )
A.B.C.16πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC边上的高,沿AD把△ABD折起,使∠BDC=90°.

(1)证明:平面ADB⊥平面BDC;
(2)若BD=1,求三棱锥D-ABC的体积.

查看答案和解析>>

同步练习册答案