精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=ex-ax-1(a∈R)
(1)讨论f(x)的单调性;
(2)设函数g(x)=x2-x,当x>0时,f(x)≥g(x)恒成立,求实数a的取值范围.

分析 (1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(2)即$a≤\frac{e^x}{x}-x-\frac{1}{x}+1$恒成立,令$h(x)=\frac{e^x}{x}-x-\frac{1}{x}+1$(x>0),根据函数的单调性求出h(x)的最小值,从而求出a的范围.

解答 解:(1)f'(x)=ex-a,
①若a≤0,f'(x)>0,f(x)在(-∞,+∞)上单调递增;
②若a>0,当x∈(-∞,lna)时,f'(x)<0,f(x)在(-∞,lna)上单调递减;
当x∈(lna,+∞)时,f'(x)>0,f(x)在(lna,+∞)上单调递增.
(2)当x>0时,f(x)≥g(x)恒成立,即ex-ax-1≥x2-x,
即$a≤\frac{e^x}{x}-x-\frac{1}{x}+1$恒成立.
令$h(x)=\frac{e^x}{x}-x-\frac{1}{x}+1$(x>0),则$h'(x)=\frac{{{e^x}(x-1)-{x^2}+1}}{x^2}$.
令φ(x)=ex(x-1)-x2+1(x>0),则φ'(x)=x(ex-2).
当x∈(0,ln2)时,φ'(x)<0,φ(x)单调递减;
当x∈(ln2,+∞)时,φ'(x)>0,φ(x)单调递增.
又x>0且x→0时,φ(x)→0,φ(1)=0,
所以,当x∈(0,1)时,φ(x)<0,即h'(x)<0,所以h(x)单调递减;
当x∈(1,+∞)时,φ(x)>0,即h'(x)>0,所以h(x)单调递增,
所以h(x)min=h(1)=e-1,所以a∈(-∞,e-1].

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=x3+x2+mx+1是R上的单调增函数,则实数m的取值范围是$[\frac{1}{3},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为480.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x∈Z|x2-4x-5<0},B={x|x>m},若A∩(∁RB)有三个元素,则实数m的取值范围是(  )
A.[3,4)B.[1,2)C.[2,3)D.(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点为F(1,0),左顶点为A,线段AF的中点为B,圆F过点B,且与C交于D,E,△BDE是等腰直角三角形,则圆F的标准方程是(x-1)2+y2=$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设复数z1,z2在复平面内对应的点关于实轴对称,z1=2+i,则$\frac{z_1}{z_2}$=$\frac{3}{5}$+$\frac{4}{5}$i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点为F1,F2,其离心率为$\frac{{\sqrt{2}}}{2}$,又抛物线x2=4y在点P(2,1)处的切线恰好过椭圆C的一个焦点.
(1)求椭圆C的方程;
(2)过点M(-4,0)斜率为k(k≠0)的直线l交椭圆C于A,B两点,直线AF1,BF1的斜率分别为k1,k2,是否存在常数λ,使得k1k+k2k=λk1k2?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,输出的S的值为(  )
A.0B.-1C.$\frac{1}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设x,y满足约束条件$\left\{\begin{array}{l}{8x-y-4≤0}\\{x+y+1≥0}\\{y-4x≤0}\end{array}\right.$,目标函数z=ax+by(a>0,b>0)的最大值为2,
(1)求a+4b的值.
(2)求$\frac{1}{a}$+$\frac{1}{b}$的最小值.

查看答案和解析>>

同步练习册答案