精英家教网 > 高中数学 > 题目详情
20.设x,y满足约束条件$\left\{\begin{array}{l}{8x-y-4≤0}\\{x+y+1≥0}\\{y-4x≤0}\end{array}\right.$,目标函数z=ax+by(a>0,b>0)的最大值为2,
(1)求a+4b的值.
(2)求$\frac{1}{a}$+$\frac{1}{b}$的最小值.

分析 (1)画出不等式组表示的平面区域,找出最优解,计算目标函数的最大值;
(2)由题意,利用基本不等式计算$\frac{1}{a}$+$\frac{1}{b}$的最小值.

解答 解:(1)不等式组$\left\{\begin{array}{l}{8x-y-4≤0}\\{x+y+1≥0}\\{y-4x≤0}\end{array}\right.$表示的平面区域
如图所示阴影部分,
当直线ax+by=z(a>0,b>0)过直线8x-y-4=0与y=4x的交点B(1,4)时,
目标函数z=ax+by(a>0,b>0)取得最大2,
即a+4b=2;…(6分)
(2)由题意,$\frac{1}{a}$+$\frac{1}{b}$=$\frac{1}{2}$(a+4b)($\frac{1}{a}$+$\frac{1}{b}$)
=$\frac{1}{2}$(5+$\frac{4b}{a}$+$\frac{a}{b}$)≥$\frac{1}{2}$(5+4)=$\frac{9}{2}$;
当且仅当a=2b=$\frac{2}{3}$时等号成立,
所以$\frac{1}{a}$+$\frac{1}{b}$的最小值是$\frac{9}{2}$.…(12分)

点评 本题考查了简单的线性规划问题,也考查了利用基本不等式求最值的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex-ax-1(a∈R)
(1)讨论f(x)的单调性;
(2)设函数g(x)=x2-x,当x>0时,f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=sin(2x+$\frac{π}{4}$)(x∈[0,$\frac{9π}{8}$]),若方程f(x)=a恰好有三个根,分别为x1,x2,x3(x1<x2<x3),则x1+2x2+x3的值为$\frac{3π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=xex在x=x0处的导数值与函数值互为相反数,则x0的值等于(  )
A.0B.-1C.$-\frac{1}{2}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F(1,0),点P是椭圆C上一动点,若动点P到点的距离的最大值为b2
(1)求椭圆C的方程,并写出其参数方程;
(2)求动点P到直线l:x+2y-9=0的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC边上的高,沿AD把△ABD折起,使∠BDC=90°.

(1)证明:平面ADB⊥平面BDC;
(2)若BD=1,求三棱锥D-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在股票买卖过程中,经常会用各种曲线来描述某一只股票的变化趋势,其中一种曲线是即时价格曲线y=f(x),一种是平均价格曲线y=g(x).例如:f(2)=3表示开始交易后2小时的即时价格为3元,g(2)=4表示开始交易后2小时内所有成交股票的平均价格为4元.下列给出的四个图象中,实线表示y=f(x),虚线表示y=g(x).其中可能正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减,若f(log2a)+f(3${log}_{\frac{1}{8}}$a)≥2f(-1),则实数a的取值范围是(  )
A.[2,4]B.[$\frac{1}{4}$,2]C.[$\frac{\sqrt{2}}{2}$,4]D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知平面直角坐标系内一点A(3,2).
(1)求经过点A(3,2),且与直线x+y-2=0平行的直线的方程;
(2)求经过点A(3,2),且与直线2x+y-1=0垂直的直线的方程;
(3)求点A(3,2)到直线3x+4y-7=0的距离.

查看答案和解析>>

同步练习册答案