精英家教网 > 高中数学 > 题目详情
15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F(1,0),点P是椭圆C上一动点,若动点P到点的距离的最大值为b2
(1)求椭圆C的方程,并写出其参数方程;
(2)求动点P到直线l:x+2y-9=0的距离的最小值.

分析 (1)由椭圆的焦点坐标,可得c,再由椭圆上的点与焦点的距离最大值为a+c,解方程可得a,b,进而得到椭圆的方程和参数方程;
(2)设点P坐标为$(2cosθ,\sqrt{3}sinθ)(θ∈R)$,运用点到直线的距离公式,以及两角和的正弦公式,化简可得距离d,再由正弦函数的值域,可得最小值.

解答 解:(1)由题意右焦点为F(1,0),点P是椭圆C上一动点,
若动点P到点的距离的最大值为b2
有:$\left\{{\begin{array}{l}{c=1}\\{a+c={b^2}}\\{{a^2}={b^2}+{c^2}}\end{array}}\right.$,
解得:$\left\{{\begin{array}{l}{a=2}\\{b=\sqrt{3}}\\{c=1}\end{array}}\right.$,
∴椭圆C的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$,其参数方程为$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(θ为参数).
(2)设点P坐标为$(2cosθ,\sqrt{3}sinθ)(θ∈R)$,
则P到直线l:x+2y-9=0的距离
$d=\frac{{|2cosθ+2\sqrt{3}sinθ-9|}}{{\sqrt{5}}}=\frac{{|4sin(θ+\frac{π}{6})-9|}}{{\sqrt{5}}}=\frac{{9-4sin(θ+\frac{π}{6})}}{{\sqrt{5}}}$,
∴当$sin(θ+\frac{π}{6})=1$,即θ=2kπ+$\frac{π}{3}$,k∈Z时,${d_{min}}=\frac{9-4}{{\sqrt{5}}}=\sqrt{5}$,
∴动点P到直线l:x+2y-9=0的距离的最小值为$\sqrt{5}$.

点评 本题考查椭圆的方程的求法,注意运用焦点坐标和椭圆上的点与焦点的距离的最值,考查椭圆参数方程的运用,以及点到直线的距离公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点为F(1,0),左顶点为A,线段AF的中点为B,圆F过点B,且与C交于D,E,△BDE是等腰直角三角形,则圆F的标准方程是(x-1)2+y2=$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在R上的偶函数f(x),满足f(x+1)=f(x-1),且f(x)在[-3,-2]上是增函数,又α、β是锐角三角形的两个内角,则(  )
A.f(sinα)>f(cosβ)B.f(cosα)<f(cosβ)C.f(sinα)<f(cosβ)D.f(sinα)<f(sinβ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D
作AM的垂线交BN于点E.求△BDE与△BDN的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=$\frac{1}{3}$x3-x+c的图象与x轴恰有两个公共点,则c=(  )
A.$±\frac{2}{3}$B.$\frac{4}{3}$或$\frac{2}{3}$C.-1或1D.$-\frac{4}{3}$或$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设x,y满足约束条件$\left\{\begin{array}{l}{8x-y-4≤0}\\{x+y+1≥0}\\{y-4x≤0}\end{array}\right.$,目标函数z=ax+by(a>0,b>0)的最大值为2,
(1)求a+4b的值.
(2)求$\frac{1}{a}$+$\frac{1}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,且a2=3,S5=25.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足${b_n}=\frac{1}{{\sqrt{{S_n}•{S_{n+1}}}}}$,n∈N*,记数列{bn}的前n项和为Tn,证明:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设{an}是公比为正数的等比数列,a1=2,a3-4=a2,则a3=(  )
A.2B.-2C.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式$\frac{x-1}{x}$>1的解集为(-∞,0).

查看答案和解析>>

同步练习册答案