2£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×óÓÒ½¹µãΪF1£¬F2£¬ÆäÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬ÓÖÅ×ÎïÏßx2=4yÔÚµãP£¨2£¬1£©´¦µÄÇÐÏßÇ¡ºÃ¹ýÍÖÔ²CµÄÒ»¸ö½¹µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýµãM£¨-4£¬0£©Ð±ÂÊΪk£¨k¡Ù0£©µÄÖ±Ïßl½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬Ö±ÏßAF1£¬BF1µÄбÂÊ·Ö±ðΪk1£¬k2£¬ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃk1k+k2k=¦Ëk1k2£¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÍƵ¼³öÅ×ÎïÏß¹ýxÖáÉÏ£¨1£¬0£©µã£¬´Ó¶øc=1£¬ÔÙÓÉÀëÐÄÂÊÄÜÇó³ö$a=\sqrt{2}£¬b=1$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÉèlµÄ·½³ÌΪy=k£¨x+4£©£¬ÁªÁ¢$\left\{{\begin{array}{l}{y=k£¨x+4£©}\\{{x^2}+2{y^2}=2}\end{array}}\right.⇒£¨1+2{k^2}£©{x^2}+16{k^2}x+32{k^2}-2=0$£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³ö³£Êý$¦Ë=\frac{2}{7}$£®

½â´ð £¨1£©¡ßÅ×ÎïÏßx2=4yÔÚµãP£¨2£¬1£©´¦µÄÇÐÏß·½³ÌΪy=x-1£¬
¡àËü¹ýxÖáÉÏ£¨1£¬0£©µã£¬
¡àÍÖÔ²CµÄÒ»¸ö½¹µãΪ£¨1£¬0£©¼´c=1
ÓÖ¡ß$e=\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬
¡à$a=\sqrt{2}£¬b=1$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬lµÄ·½³ÌΪy=k£¨x+4£©£¬
ÁªÁ¢$\left\{{\begin{array}{l}{y=k£¨x+4£©}\\{{x^2}+2{y^2}=2}\end{array}}\right.⇒£¨1+2{k^2}£©{x^2}+16{k^2}x+32{k^2}-2=0$£¬
¡à$\left\{{\begin{array}{l}{¡÷£¾0}\\{{x_1}+{x_2}=-\frac{{16{k^2}}}{{1+2{k^2}}}}\\{{x_1}{x_2}=\frac{{32{k^2}-2}}{{1+2{k^2}}}}\end{array}}\right.$£¬¡ß${F_1}£¨-1£¬0£©£¬{k_1}=\frac{y_1}{{{x_1}+1}}£¬{k_2}=\frac{y_2}{{{x_2}+1}}$£¬
¡à$\frac{1}{k_1}+\frac{1}{k_2}=\frac{{{x_1}+1}}{y_1}+\frac{{{x_2}+1}}{y_2}=\frac{1}{k}£¨\frac{{{x_1}+1}}{{{x_1}+4}}+\frac{{{x_2}+1}}{{{x_2}+4}}£©$£¬
¡à$\frac{k}{{k_1^{\;}}}+\frac{k}{k_2}=\frac{{2{x_1}{x_2}+5£¨{x_1}+{x_2}£©+8}}{{{x_1}{x_2}+4£¨{x_1}+{x_2}£©+16}}=\frac{2}{7}$£¬
¡à${k_1}k+{k_2}k=\frac{2}{7}{k_1}{k_2}$£¬
¡à´æÔÚ³£Êý$¦Ë=\frac{2}{7}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄʵÊýÖµµÄÇ󷨣¬¿¼²éÍÖÔ²¡¢Î¤´ï¶¨Àí¡¢¸ùµÄÅбðʽ¡¢Ö±Ïß·½³Ì¡¢ÏÒ³¤¹«Ê½µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®µÈ±ÈÊýÁÐ{an}µÄ¹«±ÈΪq£¬ÆäǰnÏîµÄ»ýΪTn£¬²¢ÇÒÂú×ãÌõ¼þa1£¾1£¬a49a50-1£¾0£¬£¨a49-1£©£¨a50-1£©£¼0£®¸ø³öÏÂÁнáÂÛ£º
¢Ù0£¼q£¼1£»
¢Úa1a99-1£¼0£»
¢ÛT49µÄÖµÊÇTnÖÐ×î´óµÄ£»
¢ÜʹTn£¾1³ÉÁ¢µÄ×î´ó×ÔÈ»ÊýnµÈÓÚ98£®
ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊǢ٢ڢۢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èô½«º¯Êýy=cos£¨2x-$\frac{¦Ð}{4}$£©µÄͼÏóÉϵĸ÷µãµÄºá×ø±êÉ쳤µ½Ô­À´µÄ2±¶£¨×Ý×ø±ê²»±ä£©£¬ÔÙÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬ÔòËùµÃº¯ÊýͼÏóµÄÒ»Ìõ¶Ô³ÆÖáΪ£¨¡¡¡¡£©
A£®x=$\frac{¦Ð}{12}$B£®x=$\frac{¦Ð}{4}$C£®x=$\frac{5¦Ð}{6}$D£®x=$\frac{5¦Ð}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=ex-ax-1£¨a¡ÊR£©
£¨1£©ÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©É躯Êýg£¨x£©=x2-x£¬µ±x£¾0ʱ£¬f£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®°Ñ412£¨5£©»¯Îª7½øÖÆÊýΪ212£¨7£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®´ÓдÉÏ0£¬1£¬2£¬¡­£¬9 Ê®ÕÅ¿¨Æ¬ÖУ¬ÓзŻصØÃ¿´Î³éÒ»ÕÅ£¬Á¬³éÁ½´Î£¬ÔòÁ½ÕÅ¿¨Æ¬Êý×Ö¸÷²»ÏàͬµÄ¸ÅÂÊÊÇ$\frac{9}{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Ä³¸ßÖÐΪÁ˽â¸ßÖÐѧÉúµÄÐÔ±ðºÍϲ»¶´òÀºÇòÊÇ·ñÓйأ¬¶Ô50Ãû¸ßÖÐѧÉú½øÐÐÁËÎʾíµ÷²é£¬µÃµ½ÈçÏÂÁÐÁª±í£º
 Ï²»¶´òÀºÇò²»Ï²»¶´òÀºÇòºÏ¼Æ
ÄÐÉú 5 
Å®Éú10  
ºÏ¼Æ   
ÒÑÖªÔÚÕâ50ÈËÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½Ï²»¶´òÀºÇòµÄѧÉúµÄ¸ÅÂÊΪ$\frac{3}{5}$
£¨¢ñ£©Ç뽫ÉÏÊöÁÐÁª±í²¹³äÍêÕû£»
£¨¢ò£©ÅжÏÊÇ·ñÓÐ99.5%µÄ°ÑÎÕÈÏΪϲ»¶´òÀºÇòÓëÐÔ±ðÓйأ¿
¸½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
 p£¨K2¡Ýk0£© 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.706 3.841 5.024 6.635 7.879 10.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®É躯Êýf£¨x£©=sin£¨2x+$\frac{¦Ð}{4}$£©£¨x¡Ê[0£¬$\frac{9¦Ð}{8}$]£©£¬Èô·½³Ìf£¨x£©=aÇ¡ºÃÓÐÈý¸ö¸ù£¬·Ö±ðΪx1£¬x2£¬x3£¨x1£¼x2£¼x3£©£¬Ôòx1+2x2+x3µÄֵΪ$\frac{3¦Ð}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔÚ¹ÉÆ±ÂòÂô¹ý³ÌÖУ¬¾­³£»áÓø÷ÖÖÇúÏßÀ´ÃèÊöijһֻ¹ÉƱµÄ±ä»¯Ç÷ÊÆ£¬ÆäÖÐÒ»ÖÖÇúÏßÊǼ´Ê±¼Û¸ñÇúÏßy=f£¨x£©£¬Ò»ÖÖÊÇÆ½¾ù¼Û¸ñÇúÏßy=g£¨x£©£®ÀýÈ磺f£¨2£©=3±íʾ¿ªÊ¼½»Ò׺ó2СʱµÄ¼´Ê±¼Û¸ñΪ3Ôª£¬g£¨2£©=4±íʾ¿ªÊ¼½»Ò׺ó2СʱÄÚËùÓгɽ»¹ÉƱµÄƽ¾ù¼Û¸ñΪ4Ôª£®ÏÂÁиø³öµÄËĸöͼÏóÖУ¬ÊµÏß±íʾy=f£¨x£©£¬ÐéÏß±íʾy=g£¨x£©£®ÆäÖпÉÄÜÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®B£®
C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸