| A. | x=$\frac{π}{12}$ | B. | x=$\frac{π}{4}$ | C. | x=$\frac{5π}{6}$ | D. | x=$\frac{5π}{12}$ |
分析 利用函数y=Asin(ωx+φ)的图象变换规律求出所得函数的解析式,再利用余弦函数的图象的对称性,求得所得函数图象的一条对称轴.
解答 解:将函数y=cos(2x-$\frac{π}{4}$)的图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),可得y=cos(x-$\frac{π}{4}$)的图象;
再向右平移$\frac{π}{6}$个单位,可得y=cos(x-$\frac{π}{6}$-$\frac{π}{4}$)=cos(x-$\frac{5π}{12}$)的图象,
令x-$\frac{5π}{12}$=kπ,求得x=kπ+$\frac{5π}{12}$,k∈Z.
令k=0,可得所得函数图象的一条对称轴为得x=$\frac{5π}{12}$,
故选:D.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (5,6) | B. | (6,8) | C. | (7,8) | D. | (10,12) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3,4) | B. | [1,2) | C. | [2,3) | D. | (2,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com