精英家教网 > 高中数学 > 题目详情
12.已知定义在R上的偶函数f(x)满足:0≤x≤1时,f(x)=-x3+3x,且f(x-1)=f(x+1),若方程f(x)=loga(|x|+1)+1(a>0,a≠1)恰好有12个实数根,则实数a的取值范围是(  )
A.(5,6)B.(6,8)C.(7,8)D.(10,12)

分析 作出f(x)与y=loga(|x|+1)+1的函数图象,根据函数图象的交点个数列出不等式组得出a的范围.

解答 解:∵f(x-1)=f(x+1),∴f(x)的周期为2,
作出y=f(x)与y=loga(|x|+1)+1的函数图象如图所示:

由图象可知f(x)与y=loga(|x|+1)+1都是偶函数,
∴两函数在(0,+∞)有6个不同交点,
∴$\left\{\begin{array}{l}{lo{g}_{a}6+1<2}\\{lo{g}_{a}8+1>2}\\{a>1}\end{array}\right.$,解得6<a<8.
故选B.

点评 本题考查了方程根与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$=(4,5cosα),$\overrightarrow{b}$=(3,-4tanα).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求sinα的值;
(2)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,且α为锐角,求cos(2α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在正三角形ABC中,D是BC上的点,$AB=1,BD=\frac{1}{3}$,则$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a>0,函数f(x)=ax2-x,g(x)=lnx.
(1)若$a=\frac{1}{2}$,求函数y=f(x)-2g(x)的极值;
(2)设b>0,f'(x)是f(x)的导数,g'(x)是g(x)的导数,h(x)=f'(x)+bg'(x)+1,图象的最低
点坐标为(2,8),找出最大的实数m,满足对于任意正实数x1,x2且x1+x2=1,h(x1)h(x2)≥m成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和圆x2+y2=($\frac{b}{2}$+c)2,(c为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是(  )
A.($\frac{\sqrt{2}}{5}$,$\frac{3}{5}$)B.($\frac{\sqrt{2}}{5}$,$\frac{\sqrt{5}}{5}$)C.($\frac{\sqrt{5}}{5}$,$\frac{3}{5}$)D.(0,$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=log2x,g(x)=2log2(2x+a),a∈R
(1)求函数f(x)的解析式;
(2)若对任意x∈[1,4],f(4x)≤g(x),求实数a的取值范围;
(3)设a>-2,求函数h(x)=g(x)-f(x),x∈[1,2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为(1,0),且离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)设椭圆C的上焦点为F,过F且斜率为-$\sqrt{2}$的直线l与椭圆C交于A,B两点,若$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$(其中O为坐标原点),求点P的坐标及四边形OAPB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等比数列{an}的公比为q,其前n项的积为Tn,并且满足条件a1>1,a49a50-1>0,(a49-1)(a50-1)<0.给出下列结论:
①0<q<1;
②a1a99-1<0;
③T49的值是Tn中最大的;
④使Tn>1成立的最大自然数n等于98.
其中所有正确结论的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若将函数y=cos(2x-$\frac{π}{4}$)的图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移$\frac{π}{6}$个单位,则所得函数图象的一条对称轴为(  )
A.x=$\frac{π}{12}$B.x=$\frac{π}{4}$C.x=$\frac{5π}{6}$D.x=$\frac{5π}{12}$

查看答案和解析>>

同步练习册答案