精英家教网 > 高中数学 > 题目详情
3.在正三角形ABC中,D是BC上的点,$AB=1,BD=\frac{1}{3}$,则$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\frac{5}{6}$.

分析 根据AB=1,BD=$\frac{1}{3}$,确定点D在正三角形ABC中的位置,根据向量加法满足三角形法则,把 $\overrightarrow{AD}$用 $\overrightarrow{AB}$,$\overrightarrow{BC}$表示出来,利用向量的数量积的运算法则和定义式即可求得$\overrightarrow{AB}$•$\overrightarrow{AD}$的值.

解答 解:∵AB=1,BD=$\frac{1}{3}$,
∴D是BC上的三等分点,
∴$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{BC}$,
∴$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\overrightarrow{AB}$•($\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{BC}$)
=$\overrightarrow{AB}$2+$\frac{1}{3}$$\overrightarrow{AB}$•$\overrightarrow{BC}$=1-$\frac{1}{3}$×1×1×$\frac{1}{2}$=$\frac{5}{6}$,
故答案为:$\frac{5}{6}$.

点评 此题是个中档题.考查向量的加法和数量积的运算法则和定义,体现了数形结合和转化的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设集合X是实数集R的子集,如果点x0∈R满足:对任意a>0,都存在x∈X,使得|x-x0|<a,那么称x0为集合X的聚点.用Z表示整数集,则在下列集合:①$\{\frac{n}{n+1}\left|{n∈Z,}\right.n≥0\}$,②{x∈R|x≠0},③$\{\frac{1}{n}\left|{n∈Z,}\right.n≠0\}$,④整数集Z中,以0为聚点的集合有(  )
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x+sinx.x∈(-$\frac{π}{2}$,$\frac{π}{2}$),函数g(x)的定义域为实数集R,函数h(x)=f(x)+g(x),
(1)若函数g(x)是奇函数,判断并证明函数h(x)的奇偶性;
(2)若函数g(x)是单调增函数,用反证法证明函数h(x)的图象与x轴至多有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A,B分别是离心率为$\frac{\sqrt{3}}{2}$的椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点与右顶点,右焦点F2到直线AB的距离为$\frac{2\sqrt{5}-\sqrt{15}}{5}$.
(1)求椭圆E的方程;
(2)过点M(0,2)作直线l交椭圆E于P,Q两点,求$\overrightarrow{OP}$•$\overrightarrow{OQ}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.Sn为数列{an}的前n项和.已知Sn=n2+2n
(1)求{an}的通项公式;
(2)若数列满足{bn}满足log2bn=n+log2(an-2),求数列{bn}的前n项和Tn
(3)已知数列{cn}满足cn=-$\frac{{{T_n}-6}}{{{2^{n+1}}}}$+8,若对任意n∈N*,存在x0∈[-2,2],使得c1+c2+c3+…+cn≤x2+x-2a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知复数ω是1的一个立方根,则1+ω+ω2+…+ω2017的所有可能值组合成的集合为{2018,$\frac{1}{2}+\frac{\sqrt{3}}{2}i$,$\frac{1}{2}-\frac{\sqrt{3}}{2}i$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,c<0且a,b,c这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则$\frac{p}{{b}^{2}}$$+\frac{q}{a}$-2c的最小值等于(  )
A.9B.10C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的偶函数f(x)满足:0≤x≤1时,f(x)=-x3+3x,且f(x-1)=f(x+1),若方程f(x)=loga(|x|+1)+1(a>0,a≠1)恰好有12个实数根,则实数a的取值范围是(  )
A.(5,6)B.(6,8)C.(7,8)D.(10,12)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求满足下列条件的方法种数:
(1)将4个不同的小球,放进4个不同的盒子,且没有空盒子,共有多少种放法?
(2)将4个不同的小球,放进3个不同的盒子,且没有空盒子,共有多少种放法?(最后结果用数字作答)

查看答案和解析>>

同步练习册答案