精英家教网 > 高中数学 > 题目详情
10.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为480.

分析 由频率分布直方图求出该模块测试成绩不少于60分的频率,由此能求出该模块测试成绩不少于60分的学生人数.

解答 解:由频率分布直方图得该模块测试成绩不少于60分的频率为:
1-(0.005+0.015)×10=0.8,
∴该模块测试成绩不少于60分的学生人数为:0.8×600=480.
故答案为:480.

点评 本题考查频数的求法,是基础题,解题时要认真审题,注意频数分布直方图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知a>0,函数f(x)=ax2-x,g(x)=lnx.
(1)若$a=\frac{1}{2}$,求函数y=f(x)-2g(x)的极值;
(2)设b>0,f'(x)是f(x)的导数,g'(x)是g(x)的导数,h(x)=f'(x)+bg'(x)+1,图象的最低
点坐标为(2,8),找出最大的实数m,满足对于任意正实数x1,x2且x1+x2=1,h(x1)h(x2)≥m成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等比数列{an}的公比为q,其前n项的积为Tn,并且满足条件a1>1,a49a50-1>0,(a49-1)(a50-1)<0.给出下列结论:
①0<q<1;
②a1a99-1<0;
③T49的值是Tn中最大的;
④使Tn>1成立的最大自然数n等于98.
其中所有正确结论的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的两个焦点是F1(-2,0),F2(2,0),且椭圆C经过点A(0,$\sqrt{5}$).
(1)求椭圆C的标准方程;
(2)若过椭圆C的左焦点F1(-2,0)且斜率为1的直线l与椭圆C交于P、Q两点,求线段PQ的长(提示:|PQ|=$\sqrt{1+{k}^{2}}$|x1-x2|).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)是定义在R上恒不为零的函数,且对任意的x、y∈R都有f(x)•f(y)=f(x+y),若a1=$\frac{1}{2}$,an=f(n)(n∈N*),则数列{an}的前n项和Sn的取值范围是(  )
A.[$\frac{1}{2}$,1)B.[$\frac{1}{2}$,1]C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=$\frac{1}{3}$x3-(1+$\frac{b}{2}$)x2+2bx在区间[3,5]上不是单调函数,则函数f(x)在R上的极大值为(  )
A.$\frac{2}{3}$b2-$\frac{1}{6}$b3B.$\frac{3}{2}$b-$\frac{2}{3}$C.0D.2b-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若将函数y=cos(2x-$\frac{π}{4}$)的图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移$\frac{π}{6}$个单位,则所得函数图象的一条对称轴为(  )
A.x=$\frac{π}{12}$B.x=$\frac{π}{4}$C.x=$\frac{5π}{6}$D.x=$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex-ax-1(a∈R)
(1)讨论f(x)的单调性;
(2)设函数g(x)=x2-x,当x>0时,f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=sin(2x+$\frac{π}{4}$)(x∈[0,$\frac{9π}{8}$]),若方程f(x)=a恰好有三个根,分别为x1,x2,x3(x1<x2<x3),则x1+2x2+x3的值为$\frac{3π}{2}$.

查看答案和解析>>

同步练习册答案