| A. | [$\frac{1}{2}$,1) | B. | [$\frac{1}{2}$,1] | C. | ($\frac{1}{2}$,1) | D. | ($\frac{1}{2}$,1] |
分析 根据f(x)•f(y)=f(x+y),令x=n,y=1,可得数列{an}是以$\frac{1}{2}$为首项,以$\frac{1}{2}$为公比的等比数列,进而可以求得Sn,运用单调性,进而得到Sn的取值范围.
解答 解:∵对任意x,y∈R,都有f(x)•f(y)=f(x+y),
∴令x=n,y=1,得f(n)•f(1)=f(n+1),
即$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{f(n+1)}{f(n)}$=f(1)=$\frac{1}{2}$,
∴数列{an}是以$\frac{1}{2}$为首项,以$\frac{1}{2}$为公比的等比数列,
∴an=f(n)=($\frac{1}{2}$)n,
∴Sn=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-($\frac{1}{2}$)n,
由1-($\frac{1}{2}$)n在n∈N*上递增,可得最小值为1-$\frac{1}{2}$=$\frac{1}{2}$,
则Sn∈[$\frac{1}{2}$,1).
故选:A.
点评 本题主要考查了等比数列的求和问题,解题的关键是根据对任意x,y∈R,都有f(x)•f(y)=f(x+y)得到数列{an}是等比数列,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 10 | C. | 3 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sinα)>f(cosβ) | B. | f(cosα)<f(cosβ) | C. | f(sinα)<f(cosβ) | D. | f(sinα)<f(sinβ) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com