【题目】已知函数(为常数, 为自然对数的底数),曲线在与轴的交点处的切线斜率为-1.
(1)求的值及函数的单调区间;
(2)证明:当时, ;
(3)证明:当时, .
【答案】(1), 在区间上单调递减,在上单调递增;(2)证明见解析;(3)证明见解析.
【解析】试题分析:(1)求出函数的f′(x)=ex﹣a.通过f′(x)=ex﹣2>0,即可求解函数f(x)在区间(﹣∞,ln2)上单调递减,在(ln2,+∞)上单调递增.
(2)求出f(x)的最小值,化简f(x)≥1﹣ln4.构造g(x)=ex﹣x2﹣1,通过g′(x)>0.判断g(x)在(0,+∞)上单调递增,得到g(x)>g(0),推出结果.
(3)首先证明:当x>0时,恒有.令,则h′(x)=ex﹣x2.推出h(x)在(0,+∞)上单调递增,得到x+ln3>3lnx.利用累加法推出.
试题解析:
(1)由,得.
又,所以.所以, .
由,得.
所以函数在区间上单调递减,在上单调递增.
(2)证明:由(1)知.
所以,即, .
令,则.
所以在上单调递增,所以,即.
(3)首先证明:当时,恒有.
证明如下:令,则.
由(2)知,当时, ,所以,所以在上单调递增,
所以,所以.所以,即.依次取,代入上式,则, , .
以上各式相加,有.
所以,
所以,
即.
科目:高中数学 来源: 题型:
【题目】下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )
①我离开学校不久,发现自己把作业本忘在教室,于是立刻返回教室里取了作业本再回家;
②我放学回家骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;
③我放学从学校出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.
A.(1)(2)(4)B.(4)(1)(2)C.(4)(1)(3)D.(4)(2)(3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽配厂生产某种零件,每个零件的出厂单价为60元,为了鼓励更多销售商订购,该厂决定当一次订购超过100个时,每多订购一个,订购的全部零件的出厂单价就降低元,但实际出厂单价不低于51元.
当一次订购量最少为多少时,零件的实际出厂单价恰好为51元?
设一次订购量为x个,零件的实际出厂单价为p元,写出函数的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在轴上,一个顶点,且右焦点到直线的距离为.
(1)求椭圆的方程.
(2)若点为椭圆的下顶点,是否存在斜率为,且过定点的直线,使与椭圆交于不同两点,且满足? 若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在区间,使得,则称函数为“可等域函数”.区间为函数的一个“可等域区间”.给出下列三个函数:
①;②;③;
则其中存在唯一“可等域区间”的“可等域函数”的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校100名学生期中考试数学成绩的频率分布直方图如图.
(1)求图中的值;
(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. “f(0)”是“函数f(x)是奇函数”的充要条件
B. 若p:,,则:,
C. “若,则”的否命题是“若,则”
D. 若为假命题,则p,q均为假命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com