分析 设过A的直线方程,与抛物线方程联立,根据判别式求得k,求得过A的抛物线的切线与y=0的交点,则当过点A(0,-2)和B(t,0)的直线与抛物线C没有公共点,进而求得t的范围.
解答 解:设过A的直线方程为y=kx-2,与抛物线方程联立得x2-2kx+4=0,
△=4k2-16=0,k=±2,求得过A的抛物线的切线与y=0的交点为(±1,0),
则当过点A(0,-2)和B(t,0)的直线与抛物线C没有公共点,
实数t的取值范围是(-∞,-1)∪(1,+∞),
故答案为:(-∞,-1)∪(1,+∞).
点评 本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题.
科目:高中数学 来源: 题型:选择题
| A. | (2,$\frac{π}{3}$,3) | B. | (2,$\frac{2π}{3}$,3) | C. | (2,$\frac{4π}{3}$,3) | D. | (2,$\frac{5π}{3}$,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -i | B. | i | C. | 1 | D. | 1或i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 15 | C. | 10 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com