精英家教网 > 高中数学 > 题目详情
17.已知 f(x)=$\frac{x}{2x+1}$(x>0),f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N*,则 fs(x)在[$\frac{1}{2}$,1]上的最小值是$\frac{1}{12}$.

分析 易知f(x)=$\frac{x}{2x+1}$在[$\frac{1}{2}$,1]上是增函数,且f(x)>0;从而依次代入化简即可.

解答 解:f(x)=$\frac{x}{2x+1}$在[$\frac{1}{2}$,1]上是增函数,且f(x)>0;
f1(x)=f(x)=$\frac{x}{2x+1}$,在[$\frac{1}{2}$,1]上递增,
故f1(x)min=$\frac{1}{4}$,
f2(x)min=f(f1(x)min)=f($\frac{1}{4}$)=$\frac{1}{6}$,
f3(x)min=f(f2(x)min)=f($\frac{1}{6}$)=$\frac{1}{8}$,
f4(x)min=f(f3(x)min)=f($\frac{1}{8}$)=$\frac{1}{10}$,
f5(x)min=f(f4(x)min)=f($\frac{1}{10}$)=$\frac{1}{12}$.
故答案为:$\frac{1}{12}$.

点评 本题考查了函数的性质的判断与应用,主要是单调性的运用,同时考查整体思想的应用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(Ⅰ)求证:平面AEC⊥平面PDB;
(Ⅱ)当PD=2AB,且E为PB的中点,求二面角B-AE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.求(x2+2)($\frac{1}{x}-1$)6的展开式的常数项是(  )
A.15B.-15C.17D.-17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.阅读如图的程序框图,运行相应的程序,当输入N=6时,输出的s=(  )
A.62B.64C.126D.124

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知抛物线Г:x2=2y,过点A(0,-2)和B(t,0)的直线与抛物线没有公共点,则实数t的取值范围是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知直线ax-by+2=0(a>0,b>0)过点(-1,1),则$\frac{1}{a}$+$\frac{2}{b}$的最小值为$\frac{3}{2}+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是偶函数,当x>0时,f(x)=(2x-1)lnx,则曲线y=f(x)在点(-1,f(-1))处的切线斜率为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点到直线$l:x=\frac{a^2}{c}$的距离为$\frac{4\sqrt{5}}{5}$,离心率$e=\frac{{\sqrt{5}}}{3}$,A,B是椭圆上的两动点,动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+λ\overrightarrow{OB}$,(其中λ为常数).
(1)求椭圆标准方程;
(2)当λ=1且直线AB与OP斜率均存在时,求|kAB|+|kOP|的最小值;
(3)若G是线段AB的中点,且kOA•kOB=kOG•kAB,问是否存在常数λ和平面内两定点M,N,使得动点P满足PM+PN=18,若存在,求出λ的值和定点M,N;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i为虚数单位,复数z满足$\frac{2}{z}=1-i$,则z的共轭复数$\overline z$=(  )
A.-2iB.1-iC.2iD.1+i

查看答案和解析>>

同步练习册答案